

Content

What is logistic regression?

2

Types of logistic regression

3

Worked example on binary logistic regression

What is Logistic Regression?

Like the multiple regression, logistic regression is a statistical analysis used to examine relationships between independent variables (predictors) and a dependant variable (criterion)

The main difference is in logistic regression, the criterion is *nominal* (predicting group membership). For example, do age and gender predict whether one signs up for swimming lessons (<u>yes/no</u>)

Types of Logistic Regression

- There are primarily 2 types of logistic regression: (1) Binary and (2) Multinomial models. The difference lies in the types of the criterion variable
- Binary logistic regression is for a dichotomous criterion (i.e., 2-level variable)
- Multinomial logistic regression is for a multicategorical criterion (i.e., a variable with more than 2 levels)
- This set of slides focuses on <u>binary logistic regression</u>

Example...

A researcher would like to find out if the three predictors can predict successful enrolment into the Masters of Psychology program at JCU. The researcher recruited 30 participants who applied for the program, and asked them the following questions:

Interest in the Masters of Psychology program (rated 1-100)
 Average overall score from a previous degree (scored 1-100)
 Holding a psychology degree (yes/no)
 Successful enrolment (yes/no)

A binary logistic regression was then conducted.

Note that sample size of 30 was used only for illustration purposes, an actual study would require larger sample size!

Location of SPSS Data Files for Practice

Example SPSS data for practice are available on LearnJCU:

Log in to LearnJCU -> Organisations -> Learning Centre JCU Singapore -> Learning Centre -> Statistics and Maths -> SPSS Data for Practice

Assumptions Testing

03

Outliers

Assumptions Testing

Please refer to the SPSS guide on Multiple Regression of how to conduct the four assumption tests at <u>https://www.jcu.edu.sg/current-</u> <u>students/student-support-services/learning-support/statistics-and-</u> <u>mathematics-support</u>

Assumptions Testing

Multicollinearity

01

02

04

Independence of errors

Outliers

This is an assumption that the relationship between each continuous predictor and a criterion is linear.

- Interest and PreviousScore are continuous, thus they have to be tested for this assumption.
- *PsychDegree* is categorical, hence it is not requited to be tested.

To test for this, we first need to create new variables in our dataset: Logit functions of the continuous IVs

• Transform \rightarrow Compute Variable

<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> ten				
Comput	e Variable							
E Programmability Transformation								
Count Values within Cases								
Shi <u>f</u> t Values								
🔤 Recode	into <u>S</u> ame '	Variables	-					
🔤 <u>R</u> ecode	into Differer	nt Variables	s					
🔡 <u>A</u> utoma	tic Recode.							
+ Create I	Dummy Vari	iables						
Visual E	<u>3</u> inning							
<mark> C</mark> pt <u>i</u> mal	Binning							
Prepare	Data for M	odeling		•				

ta Compute Variable

- Select 'Arithmetic' under Function group, and double click on 'Ln' under Functions and special variables
- 2. LN should appear under Numeric Expression
- 3. To create the logit expression of the first continuous variable (*Interest*), double click on Interest
- 4. Name the target variable <u>LnInterest</u>

Target Variable:	Num <u>e</u> ric Expression: = LN(Interest)	
Type & Label	+ < > 7 8 9 - <= >= 4 5 6 • = ~= 1 2 3 / & 1 0 . • ~ () Delete ELN(numexpr). Numeric. Returns the base-e logarithm of numexpr, which must be numeric and greater than 0. ection condition)	Function group: All Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Date Creation Functions and Special Variables Abs Arisin Artan Cos Exp Lg10 Ln Lngamma Mod Rnd(1) D-dro
	OK <u>P</u> aste <u>R</u> eset Cancel Help	

×

Repeat the procedures, this time creating the logit function of the other continuous variable (*PreviousScore*)

You will see these 2 new variables in your dataset

🔊 Serial	num	🔗 Interest	PreviousS	PsychDe	🗞 Enrolled	Julinterest	LnPreviousScore
* be	r		* core	gree			
	1	73	50	1	1	4.29	3.91
	2	89	50	1	1	4.49	3.91
	3	89	50	1	1	4.49	3.91
	4	94	50	1	1	4.54	3.91
	5	77	50	1	1	4.34	3.91
	6	65	60	1	2	4.17	4.09
	7	69	60	1	2	4.23	4.09
	8	55	55	1	2	4.01	4.01
	9	81	60	1	2	4.39	4.09
	10	75	70	1	1	4.32	4.25
	11	69	70	1	1	4.23	4.25
	12	70	65	1	1	4.25	4.17
	13	93	68	1	1	4.53	4.22
	14	79	69	1	1	4.37	4.23
	15	70	70	1	1	4.25	4.25
	16	90	89	1	2	4.50	4.49
	17	73	75	1	2	4.29	4.32
	18	80	80	1	2	4.38	4.38
	19	86	79	1	2	4.45	4.37
	20	78	78	1	2	4.36	4.36
	21	82	77	2	2	4.41	4.34
	22	81	68	2	1	4.39	4.22
	23	78	70	2	1	4.36	4.25
	24	76	71	2	1	4.33	4.26
	25	96	80	2	2	4.56	4.38
	26	72	68	2	1	4.28	4.22
	27	65	75	2	2	4.17	4.32
	28	66	77	2	2	4.19	4.34
	29	75	80	2	2	4.32	4.38
	20	70	82	2	2	4.25	1.0

<u>A</u>n

To conduct the assumption test for logit linearity, go to **Analyze** -**> Regression -> Binary Logistic**

alyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indov	v I	<u>H</u> elp				
Re <u>p</u> o	rts		•			A	6			
D <u>e</u> sci	riptive Stati	stics	•			14	U			
<u>B</u> ayes	ian Statist	ics	•							
Ta <u>b</u> le	s		•	🛷 LnInterest 🛛 🛷 LnPrevi						
Co <u>m</u> p	are Means	5	•							
<u>G</u> ene	ral Linear N	lodel	•	1		4.29				
Gene	rali <u>z</u> ed Line	ear Models	•	1		4.49				
Mixed	Models		•	1		4.49				
Corre	late		•	1		4.54				
Regre	ession		•	Auton	natic	I inear Mo	odelina			
L <u>og</u> lir	near		•	Lines	r					
Neura	al Net <u>w</u> orks	3	•		. Eeti	mation				
Class	i <u>f</u> y		•							
<u>D</u> ime	nsion Red	uction	•	Partial Least Squares						
Sc <u>a</u> le			•	PROG	CESS	6 v4.0 by A	ndrew F.	Hayes		
Nonp	arametric 1	Fests	•	PROC	CESS	3 v3.5 by A	ndrew F.	Hayes		
Forec	as <u>t</u> ing		•	PRO	CESS	3 v3.4 by A	ndrew F.	Hayes		
<u>S</u> urviv	al		•	🔠 Binar	y Log	istic				
M <u>u</u> ltip	le Respon	se	•	Multinomial Logistic						
Missir	ng Value Ar	nalvsis		Crdin	al					

- 1. Move ' Enrolled' into the Dependent box
- Move 'Interest' and 'PreviousScore' into the Covariates box
- Holding the Ctrl key, then select 'Interest' and 'LnInterest', and click on '>a*b>' to enter the interaction term into the Covariates box
- Repeat Step 3 for 'PreviousScore' and 'LnPreviousScore'

- You should have 4 Covariates in total
- Click OK

			В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	Interest	-	8.430	6.888	1.49	8 1	.221	.000
	PreviousScore		8.936	5.091	3.08	1 1	.079	.000
	Interest by LnInterest		1.550	1.282	1.46	3 1	.227	4.712
	LnPreviousScore by PreviousScore		1.761	.989	3.17	2 1	.075	5.821
	Constant	23	0.910	129.181	3.19	5 1	.074	1.918E+100

Variables in the Equation

a. Variable(s) entered on step 1: Interest, PreviousScore, Interest * LnInterest , LnPreviousScore * PreviousScore .

Since the *p* values of <u>the interaction terms</u> are above .05, we conclude that the assumption for logit linearity is *not* violated

Now to conduct the main analysis...

Analyze -> Regression -> Binary Logistic

<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	Extensions		<u>W</u> indow	<u>H</u> elp				
Repor	ts		•	E		A				
D <u>e</u> scr	iptive Statis	stics	•	E		1				
<u>B</u> ayes	ian Statisti	cs	•							
Ta <u>b</u> le:	5		•		🛷 Lnir	iterest	🛷 LnPreviousS			
Co <u>m</u> p	are Means		•							
<u>G</u> ener	al Linear N	lodel	•	1		4.29				
Gener	alized Line	ar Models	•	1		4.49				
Mi <u>x</u> ed	Models		•	1		4.49				
<u>C</u> orre	ate		•	1		4.54				
<u>R</u> egre	ssion		۱. F	Automatic Linear Modeling						
L <u>og</u> lin	ear		۴.		Linear					
Neura	l Net <u>w</u> orks		•	Curve Estimation						
Class	i <u>f</u> y		•	Detriel Least Squares						
<u>D</u> imer	nsion Redu	iction	•	PD		a <u>s</u> t oqual				
Sc <u>a</u> le			•		PROCES	S v4.0 by /	Andrew F. Hayes			
<u>N</u> onpa	arametric T	ests	•		PROCES	S v3.5 by /	Andrew F. Hayes			
Forec	as <u>t</u> ing		•		PROCES	S v3.4 by /	Andrew F. Hayes			
<u>S</u> urviv	al		•		Binary Lo	gistic				
M <u>u</u> ltip	le Respons	se	۴.	R	Multinom	ial Logisti	C			
2	- 1/-1 4	-turte								

- 1. Move 'Enrolled' into the Dependent box
- Move 'Interest', 'PreviousScore' and 'PsychDegree' into the Covariates box

Note that 'PsychDegree' is a categorical variable.

- 3. Click on *Categorical*
- 4. Select 'PsychDegree' as a categorical covariate
- 5. Continue

Logistic Regression: Defir	ne Categori	ical Variables		×
<u>C</u> ovariates:		Categorical Covariates	S:	
🔗 Interest		PsychDegree(Indicate	or)	
InterviousScore 🌮				
	-			
		Change Contrast —		
		Contrast:	Indicator 🔹 🔻	Change
		Reference Category:	Last	O First
	l		_	-
(<u>C</u> ontinue	Cancel Help		

- 6. Click on Save
- 7. Select Probabilities, Group membership, Cook's (this can be used to screen for outliers), and Standardized Residuals
- 8. Continue

- 9. Click on **Options**
- 10. Select Classification plots, Hosmer-Lemeshow goodnessof-fit, and CI for exp(B)
- 11. Continue, and OK

Assumptions Testing: Outliers

01

Multicollinearity

Logit Linearity

03

02 Independence of

errors

Assumptions Testing: Outliers

- Outliers can be tested together with the main analysis
- Looking at the dataset, *Cook's distance* is added as a new variable
- Since all the values are <

 we conclude that there are no outliers

Serialnum ber	🛷 Interest	PreviousS core	PsychDe gree	🗞 Enrolled	LnInterest	LnPreviousScore	PRE_1	🗞 PGR_1		N ZRE_1
1	73	50	1	1	4.29	3.91	.07239	1	.00892	27935
2	89	50	1	1	4.49	3.91	.02224	1	.00157	15083
3	89	50	1	1	4.49	3.91	.02224	1	.00157	15083
4	94	50	1	1	4.54	3.91	.01524	1	.00092	12441
5	77	50	1	1	4.34	3.91	.05423	1	.00565	23946
6	65	60	1	2	4.17	4.09	.41803	1	.23694	1.17990
7	69	60	1	2	4.23	4.09	.34547	1	.24950	1.37645
8	55	55	1	2	4.01	4.01	.41044	1	.68618	1.19849
9	81	60	1	2	4.39	4.09	.17314	1	.63564	2.18530
10	75	70	1	1	4.32	4.25	.62296	2	.15271	-1.28539
11	69	70	1	1	4.23	4.25	.72399	2	.28544	-1.61960
12	70	65	1	1	4.25	4.17	.52140	2	.11212	-1.04375
13	93	68	1	1	4.53	4.22	.23053	1	.08954	54736
14	79	69	1	1	4.37	4.23	.50840	2	.10924	-1.01695
15	70	70	1	1	4.25	4.25	.70834	2	.25187	-1.55840
16	90	89	1	2	4.50	4.49	.91629	2	.01731	.30226
17	73	75	1	2	4.29	4.32	.81121	2	.02494	.48242
18	80	80	1	2	4.38	4.38	.84817	2	.02401	.42310
19	86	79	1	2	4.45	4.37	.74983	2	.06942	.57761
20	78	78	1	2	4.36	4.36	.82545	2	.02594	.45985
21	82	77	2	2	4.41	4.34	.60281	2	.10282	.81172
22	81	68	2	1	4.39	4.22	.27912	1	.07000	62226
23	78	70	2	1	4.36	4.25	.40203	1	.10982	81996
24	76	71	2	1	4.33	4.26	.47936	1	.14367	95955
25	96	80	2	2	4.56	4.38	.45503	1	.57961	1.09438
26	72	68	2	1	4.28	4.22	.43649	1	.14852	88010
27	65	75	2	2	4.17	4.32	.80317	2	.04636	.49504
28	66	77	2	2	4.19	4.34	.83887	2	.03130	.43827
29	75	80	2	2	4.32	4.38	.80807	2	.03018	.48736
30	70	82	2	2	4 25	4 41	89505	2	01390	34243

a. Constant is included in the mod

b. The cut value is .500

- The purpose of logistic regression is thus to find out if the *prediction accuracy* of the model can be improved by predictor variables
- This table shows the regression model with no predictors involved (block 0). This model (at Step 0) can correctly predict if someone successfully enrolled 50% of the time.

a. The cut value is .500

In Step 1, the addition of the predictors resulted in the model being able to predict successful enrolment 66.7% of the time (compared to 50% in block 0; 16.7% improvement !)

	valiables in the Equation										
								95% C.I.for EXP(B)			
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper		
Step 1 ª	Interest	077	.054	2.051	1	.152	.926	.833	1.029		
	PreviousScore	.160	.066	5.972	1	.015	1.174	1.032	1.335		
	PsychDegree(1)	.668	1.003	.443	1	.506	1.950	.273	13.938		
	Constant	-5.611	4.931	1.295	1	.255	.004				

Variables in the Equation

a. Variable(s) entered on step 1: Interest, PreviousScore, PsychDegree.

- This table tells us which predictors are significant. Only Previous score is a significant predictor (p < .05)
- In logistic regression, Exp(B) is commonly used to interpret results, and is expressed as an odds ratio
- In other words, an increase of 1 unit in Previous score results in a 17.4% more chance of enrolling in the masters program (1.174 – 1 = .174, meaning .174 above 1)
- The other statistics (e.g., B, Wald, 95% CI) can also be reported in the writeup

Write-Up

An example write-up can be found on page 228 in

Allen, P., Bennett, K., & Heritage, B. (2019). SPSS Statistics: A Practical Guide (4th ed.). Cengage Learning.

Questions?

learningcentre-singapore@jcu.edu.au