

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB311 - OPTICAL AND MICROWAVE ENGINEERING

TOPIC- TEE JUNCTION

MICROWAVE PASSIVE COMPONENTS

 \succ Microwave passive devices are used inside microwave measurement instruments, and they are used to combine instruments to create more complex measurement systems.

 \succ In all cases, these devices will split, combine, filter, attenuate, and/or shift the phase of a microwave signal as it propagates through a particular transmission system.

Examples:

- Power Divider (TEE JUNCTIONS)
- Directional Coupler
- Magic Tee •
- Attenuator
- Resonator

TEE JUNCTIONS

MICROWAVE T- JUNCTIONS

T junction is an intersection of three waveguides in the form of English alphabet T'. There are several types of Tee junctions.

In microwave circuits a waveguide or coaxial-line with Three independent ports is commonly referred to as a Tee junction.

TEE JUNCTIONS

- They are used to connect branch (or) section of the waveguides in series or parallel with the main waveguide transmission line
- providing means of splitting and also of combining power in a waveguide system.
- The two basic Types are i) E -plane Tee (Series)

(ii) H-plane Tee (Shunt).

E-PLANE TEE (SERIES TEE)

- An E-plane tee is a waveguide tee in which the axis of its side arm is • parallel to the E- field of the main guide.
- Ports I and 2 are the collinear arms and port 3 is the E- arm (side arm).
- A rectangular slot is cut along the broader dimension of a long waveguide and a side arm is attached

E-PLANE TEE (SERIES TEE)

- When the waves are fed into the side arm (port 3)
- The waves appearing at port 1 and port 2 of the collinear arm will be in opposite phase and in the same magnitude. S13 = -S23
- In general, the power out port 3 (side or E arm) is proportional to the difference between instantaneous powers entering from ports I and 2.
- <u>Difference Arm</u>

If two input waves are fed into port I and port 2 of the collinear arm, the output wave at port 3 will be opposite in phase and subtractive. Sometimes, this third port is called the difference arm

• For E-plane tee, [S] is a3 x3 matrix since there are 3 ports,

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$

The scattering coefficient due to difference arms are,

$$S_{23} = -S_{13}$$

• The equation represents that the outputs at ports 1 and 2 are out of phase by 180 °with an input at port 3.

... (1)

... (2)

If port 3 is perfectly matched to the junction,

$$S_{33} = 0$$

Using symmetric property, $S_{ij} = S_{ji}$

$$S_{12} = S_{21}$$

 $S_{13} = S_{31}$
 $S_{23} = S_{32}$

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & -S_{13} \\ S_{13} & -S_{13} & 0 \end{bmatrix}$$

MICROWAVE PASSIVE DEVICES/19ECTB311- OPTICAL AND MICROWAVE ENGINEERING/R.POORNIMA/ECE/SNSCT

1/22/2024

... (3)

... (4)

... (5)

Apply unity property of [S] matrix for equation(5), we get

 $[S] . [S]^* = [I]$ $\begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{12} & S_{22} & -S_{13} \\ S_{13} & -S_{13} & 0 \end{bmatrix} \begin{bmatrix} S_{11}^* & S_{12}^* & S_{13}^* \\ S_{12}^* & S_{22}^* & -S_{13}^* \\ S_{13}^* & -S_{13}^* & 0 \end{bmatrix} =$ $|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = 1$ R_1C_1 : $|S_{12}|^2 + |S_{22}|^2 + |S_{13}|^2 = 1$ R_2C_2 : $|S_{13}|^2 + |S_{13}|^2 = 1$ **R₃C₃:**

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

... (6) ... (7) ... (8)

Using zero property of [S] matrix, we get

R₃C₁:
$$S_{13} \cdot S_{11}^* - S_{13} \cdot S_{12}^* = 0$$

By equating equations (6) and (7), we get

$$|S_{11}|^2 + |S_{12}|^2 + |S_{13}|^2 = |S_{12}|^2 + |S_{22}|$$
$$S_{11} = S_{22}$$

From Equation (8), we get the value of S_{13} as

$$2 |S_{13}|^2 = 1$$
$$|S_{13}|^2 = \frac{1}{2}$$
$$|S_{13}|^2 = \frac{1}{2}$$
$$|S_{13}| = \frac{1}{\sqrt{2}}$$

1/22/2024

 $|^{2} + |S_{13}|^{2}$

... (10)

... (11)

From equation (9),

$$S_{13} \left(S_{11}^* - S_{12}^* \right) = 0$$

$$S_{11}^* - S_{12}^* = 0$$

$$S_{11}^* - S_{12}^* = 0$$

$$S_{11} = S_{12} = S_{22}$$

By using equations (10), (11) and (12) in equation (6), we get

$$S_{11} \Big|^{2} + \Big| S_{11} \Big|^{2} + \frac{1}{2} = 1$$
$$2 \Big| S_{11} \Big|^{2} = \frac{1}{2}$$
$$\boxed{S_{11} = \frac{1}{2}}$$

MICROWAVE PASSIVE DEVICES/19ECTB311- OPTICAL AND MICROWAVE ENGINEERING/R.POORNIMA/ECE/SNSCT

1/22/2024

... (12)

... (13)

• Thus the equation represents the scattering matrix for E-plane tee.

$$\begin{bmatrix} \mathbf{S} \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 1/\sqrt{2} \\ 1/2 & 1/2 & -1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{bmatrix}$$

1/22/2024

MICROWAVE PASSIVE DEVICES/19ECTB311– OPTICAL AND MICROWAVE ENGINEERING/R.POORNIMA/ECE/SNSCT

