

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade (III Cycle) Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECB202 – LINEAR INTEGRATED CIRCUITS

II YEAR/ IV SEMESTER

UNIT 1 – OPAMP CHARACTERISTICS

TOPIC 4 – AC and DC characteristics of Op-amp

1/21/2025

AC and DC characteristics/23ECB202-LIC/Dr.V.S.Nishok/Assistant Professor/ECE/SNSCT

Why DC Characteristics?

An ideal op- amp draws no current from the source and its response is also independent of temperature

 \blacktriangleright An real op-amp does not work this way

 \succ Current is taken from the source into the op-amp inputs

 \triangleright Also the inputs respond differently to current and voltage due to mismatch in transistors

 \blacktriangleright A real op-amp also shifts its operation with temperature

 \blacktriangleright In this case, these non- ideal dc characteristics that add error components to the dc output voltage

DC Characteristics

- 1. Input bias current
- 2. Input offset current
- 3. Input offset voltage
- 4. Thermal drift

acteristics		
C voltage (V)		
	1	
4/1	14	

Input bias current

- The average value of the two currents flowing into the op-amp input
- terminals is called Input Bias current (Ib)
- The two input currents are identical due to mismatch in transistors
- Let Ib1 be the current flowing into non inverting terminal and Ib2 be
- the current into the other
- Then the Input Bias current (Ib) is given by,

Input offset current

- •The input stage of the op-amp is dual input differential amplifier
- •Hence the input currents of op-amp are the base currents of the

transistors used in the input stage

- •Due to transistor mismatch these currents differ
- •The algebraic difference between the currents flowing into the two input

terminals of the op-amp is called input offset current and denoted as Iios.

It is given by,

$$I_{ios} = I_{b1} - I_{b2}$$

Input Offset Voltage

•Input offset voltage is the differential voltage which is required to apply between the two terminals of the **op-amp** such that the **output** of the **op-amp** will become zero when no input is applied to the **op-amp**

• Output offset voltage is the multiplication of DC gain and the input offset voltage

Thermal Drift

- •**Thermal drift** is the changes in the normal operational behaviour of a device due to changes in ambient temperature •Drift caused by internal heating of equipment during normal operation or by changes in external ambient temperature
- •There are very few circuit techniques that can be used to minimize the effect of drift
- •Careful printed circuit board layout must be equal be used to keep opamps away from source of heat
- Forced air cooling may be used to stabilize the ambient temperature

Activity

In class activity

Can You Solve This? Viral "IQ" Test

$$1 + 4 = 5$$

$$2 + 5 = 12$$

$$3 + 6 = 21$$

$$8 + 11 = ?$$

1/21/2025

AC and DC characteristics/23ECB202-LIC/Dr.V.S.Nishok/Assistant Professor/ECE/SNSCT

Why AC Characteristics ?

 \triangleright Purpose of this circuit is to amplify a small AC input signal, such as an audio or radio frequency signal

 \blacktriangleright A small AC voltage is applied to the input, through a coupling capacitor

>Hence, such a circuit is useful only as an **AC amplifier**

To amplify DC signals separate operational **amplifier** circuit is used

For small signal sinusoidal applications the AC characteristics are 1. Frequency response.

2. Slew rate.

Frequency response

≻An ideal op-amp has infinite band width

➢ Its open loop gain is 90dB with d.c.signal and this gain should remain the same through audio and radio frequency

➢But practically op-amp gain decreases at high frequency

➤This is due to a capacitive component in the equivalent circuit of op-amp.

Slew rate

- \succ The slew rate is defined as the maximum rate of change of output voltage caused by a step input voltage., Specified in $V/\mu s$
 - eg : 1V/micro sec. slew rate denotes the output rises or falls by 1 volts in 1 micro seconds

 \succ The rate at which the voltage across the capacitor dVc/dt is given by dVc/dt = I/C, Slew rate SR dVc/dt|max= Imax/ C For IC741, Imax= 15 micro amps, C= 30 Pico farad

Slew rate = 0.5V/micro sec

Assessment

What's the issue/ question/ topic?	What do] think about it?	What does my partner think?	What will we share?
			<u> </u>

1/21/2025

AC and DC characteristics/23ECB202-LIC/Dr.V.S.Nishok/Assistant Professor/ECE/SNSCT

THANK YOU

1/21/2025

AC and DC characteristics/23ECB202-LIC/Dr.V.S.Nishok/Assistant Professor/ECE/SNSCT

