

SNS COLLEGE OF TECHNOLOGY

Coimbatore - 35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19ECT311 / Wireless Communication

III ECE/ VI SEMESTER

Unit I -FUNDAMENTALS OF WIRELESS COMMUNICATION

Topic 8 : Improving Coverage and Capacity

Improving coverage and capacity/19ECT311 Wireless Communication /E.CHRISTINA DALLY/ECE/SNSCT

Improving Capacity in Cellular Systems

- Methods for improving capacity in cellular systems
 - Cell Splitting: subdividing a congested cell into smaller cells
 - Sectoring: directional antennas to control the interference and frequency reuse
 - Coverage zone : Distributing the coverage of a cell and extends the cell boundary to hard-to-reach place

- Split congested cell into smaller cells
 - Preserve frequency reuse plan
 - Reduce transmission power

Illustration of cell splitting within a 3 km by 3 km square

- Transmission power reduction from P_{t1} to P_{t2}
- Examining the receiving power at the new and old cell boundary

 P_r [at old cell boundary] $\propto P_{t1}R^{-n}$

 P_r [at new cell boundary] $\propto P_{t2}(R/2)^{-n}$

• If we take *n* = 4 and set the received power equal to each other

$$P_{t2} = \frac{P_{t1}}{16}$$

Cell Splitting

- The transmit power must be reduced by 12 dB in order to fill in the original coverage area
- Problem: if only part of the cells are splitted
 - Different cell sizes will exist simultaneously
- Handoff issues high speed and low speed traffic can be simultaneously accommodated

In class activity:

What are the next three numbers in this series?

4, 6, 12, 18, 30, 42, 60, 72, 102, 108, ?, ?, ?

Sectoring

- Decrease the *co-channel interference* and keep the cell *(C)* radius *R* unchanged
 - Replacing single omni-directional antenna by several directional antennas
 - Radiating within a specified sector

Interference Reduction

Microcell Zone Concept

- Antennas are placed at the outer edges of the cell
- Any channel may be assigned to any zone by the base station
- Mobile is served by the zone with the strongest signal

- Handoff within a cell
 - No channel re-assignment
 - Switch the channel to a different zone site
- Reduce interference
 - Low power transmitters are employed

ASSESSMENT

Illustrate the cell splitting concept with suitable example.

Improving coverage and capacity/19ECT311 Wireless Communication /E.CHRISTINA DALLY/ECE/SNSCT 12/12