

SNS COLLEGE OF TECHNOLOGY

Coimbatore - 35

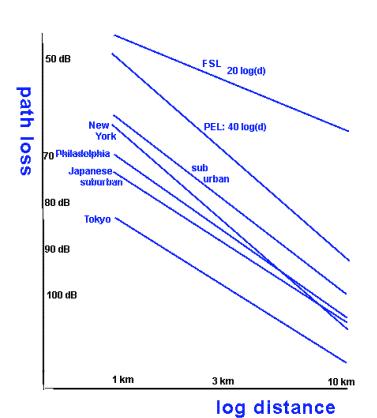
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

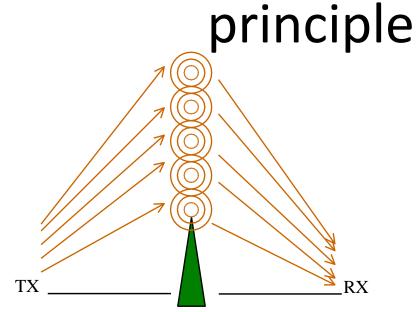
19ECT311 / Wireless Communication

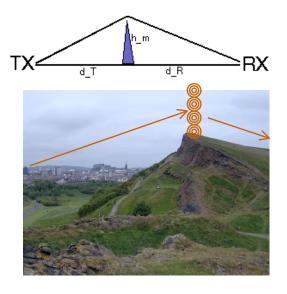
III ECE/ VI SEMESTER


Unit II - MOBILE RADIO PROPAGATION

Topic 4: Diffraction

Path Loss versus Distance





<u>Calculate</u>

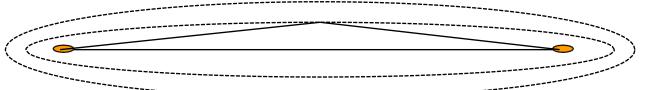
Diffraction loss: Huygens

 h_m is the height of the obstacle, and d_t is distance transmitter - obstacle d_r is distance receiver - obstacle

Diffraction loss

The diffraction parameter *v* is defined as

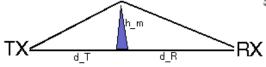
$$v = h_m \sqrt{\frac{2}{\lambda} \left(\frac{1}{d_t} + \frac{1}{d_r} \right)},$$


where

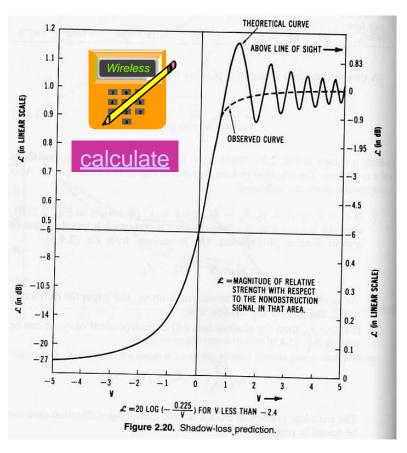
 h_m is the height of the obstacle, and

 d_t is distance transmitter - obstacle

 d_r is distance receiver - obstacle


Fresnel zone: ellipsoid at which the excess path length is constant (e.g. $\lambda/2$)

Diffraction loss


The diffraction parameter *v*

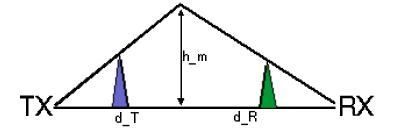
$$v = h_m \sqrt{\frac{2}{\lambda} \left(\frac{1}{d_t} + \frac{1}{d_r} \right)},$$

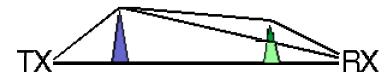
The diffraction loss L_d , expressed

in dB, is approximated by

$$L_d = \begin{cases} 6 + 9v - 1.27v^2 & 0 < v < 2.4\\ 13 + 20\log v & v > 2.4 \end{cases}$$

ACTIVITY


Activity: Draw a logo which may describe your character or things you like.



Multiple knife edges

How to model multiple hills?
Bullington

Deygout

Epstein

Typical terrain

Propagation models consider a full terrain profile

- multiple knife edges or rounded edges
- groundreflections

Micro-cellular models

Statistical Model

- •At short range, R_c may not be close to -1. Therefor, nulls are less prominent than predicted by the simplified two-ray formula.
- •UHF propagation for low antenna's (h_t = 5 .. 10 m)

$$p = r^{-\beta_1} \left(1 + \frac{r}{r_g} \right)^{-\beta_2}$$

Deterministic Models:

•Ray-tracing (ground and building reflection, diffraction, scattering)

Indoor Models

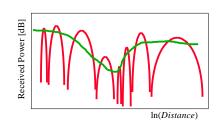
<u>calculate</u>

- Difficult to predict exactly
- Ray-tracing model prevail
- Some statistical Models, e.g.

COST 231: 800 MHz and 1.9 GHz

E	nvironment Exponen		t n Propagation		ion
	Mechanism Corridors			1.4 - 1.9	Wave
	guidance				
L	ar ge ത്രാം നെ ത്തെട്ട 2		3 Free spaceHonsultipath		
	Densely furnished	l rooms	4	Non-LOS, diffi	raction, scattering
	Between different	floors	5	Losses during	floor / wall traverses

Statistical Fluctuations



- is determined by path loss
- is an average over 100 m 5 km

- is caused by local 'shadowing' effects
- has slow variations
- is an average over 40 λ (few meters)
- Instantaneous power
 - fluctuations are caused by multipath reception
 - depends on location and frequency
 - depends on time if antenna is in motion
 - has fast variations (fades occur about every half a wave length)

Relevant to operator

Relevant to manufacturer

Shadowing

- Local obstacles cause random shadow attenuation
- Model: Normal distribution of the received power
- P_{Log} in logarithmic units (such as dB or neper),
- Probability Density:

$$f_{\overline{p}}(\overline{p}) = \frac{1}{\sqrt{2\pi} \sigma \overline{p}} \exp \left\{ \frac{1}{2\sigma^2} \ln^2 \left(\frac{\overline{p}}{\overline{p}} \right) \right\},$$

where

σ is 'log. standard deviation' in neper (σ_{dB}= 4.34 σ). P_{Log} = In [local-mean power / area-mean power

Assessment

- ➤ Link budget consists of calculation of
 - a) Useful signal power
 - b) Interfering noise power
 - c) Useful signal & Interfering noise power
 - d) Signal and Noise
- Link budget can help in predicting
 - a) Equipment weight and size
 - b) Technical risk
 - c) Prime power requirements
 - d) Equipment weight and size, Technical risk and Prime power requirements.
- > Space loss occurs due to decrease in
 - a) Electric field strength
 - b) Efficiency
 - c) Phase
 - d) Signal power

Thank you