
SNS COLLEGE OF
TECHNOLOGYCoimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS &
COMMUNICATION ENGINEERING

19ECT312 – EMBEDDED SYSTEM DESIGN

III YEAR/ VI SEMESTER

TOPIC : Memory Management in Embedded system

11/22/2024

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 26/03/202
4

Memory Management

26/03/2024 2/13

What is an Memory Management ?

• Memory management in embedded systems is a crucial aspect of software
development, especially considering the limited resources typically available in
such systems.

• Embedded systems often have constraints in terms of memory size, processing

power, and energy consumption.

• Efficient memory management is essential to ensure optimal utilization of
resources and to meet performance requirements.

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT

26/03/2024 3/13

Memory Management

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT

26/03/2024 4/13

Memory allocation in memory management for embedded
systems involves the process of efficiently assigning memory
resources to different components of the embedded software.

Static Allocation:

▪ In many embedded systems, memory allocation is primarily
static, meaning that memory usage is determined at
compile time.

▪ Memory for variables, data structures, and buffers is
allocated statically, typically based on predefined
requirements and constraints.

▪ This approach helps avoid the overhead and
unpredictability associated with dynamic memory allocation
and deallocation.

Memory Management

What is an Memory Allocation ?

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT

26/03/2024 5/13

Stack-Based Allocation:
▪ Stack memory is commonly used for local variables and function call

frames in embedded systems.
▪ As functions are called and return, the stack pointer is adjusted

accordingly to allocate and deallocate memory for local variables and
function parameters.

▪ Stack-based allocation provides deterministic behavior and efficient
memory management, particularly for short-lived data.

Static Data Allocation:
▪ Global variables and statically allocated data structures are placed in

memory regions determined at compile time.
▪ The size and location of these variables are known during

compilation, allowing the compiler/linker to assign memory
addresses accordingly.

▪ Static data allocation is well-suited for data that persists throughout
the program's execution.

Memory Management

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT

26/03/2024 6/13

Heap-Based Allocation:
▪ Although less common in embedded systems due to its dynamic nature,

heap-based memory allocation is sometimes used for allocating memory at
runtime.
▪ Embedded systems may employ custom memory allocation schemes, such

as memory pools or fixed-size allocators, to mitigate fragmentation and
overhead associated with traditional heap management.
▪ Heap-based allocation requires careful management to prevent memory

fragmentation and ensure efficient memory usage.
Memory Constraints and Optimization:

▪ Memory allocation in embedded systems must consider stringent
constraints such as limited memory size and real-time performance
requirements.
▪ Optimization techniques, including code and data compression, memory

pooling, and alignment, are applied to minimize memory usage and
maximize resource utilization.
▪ Trade-offs between memory usage, performance, and complexity are

carefully evaluated to meet the specific requirements of the embedded
system.

Memory Management

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT

26/03/2024 7/13

Memory Profiling Techniques

Introducing various profiling techniques for analyzing memory usage in embedded
systems.
▪ Memory Usage Graphs: Visual representations of memory consumption over time,

showing trends and peaks in memory usage.
▪ Memory Heatmaps: Color-coded representations of memory usage across different

memory regions or components, highlighting areas of high and low usage.
▪ Memory Allocation Tree: Hierarchical diagram illustrating memory allocation

relationships, showing how memory is divided among different components and data
structures.

▪ Memory Leak Detection: Diagrams or tables indicating potential memory leaks,
including information such as allocated memory blocks, their sizes, and references to
the code causing the leaks.

▪ Heap and Stack Usage: Graphs or diagrams showing the usage of heap and stack
memory over time, helping identify potential issues such as stack overflow or
excessive heap fragmentation.

▪ Function Call Memory Profiles: Visualizations depicting memory usage associated
with specific functions or modules, aiding in identifying memory-intensive areas of
code.

▪ Memory Access Patterns: Visual representations of memory access patterns,
including read and write operations, helping optimize memory usage and access
efficiency.

Memory Management

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT

26/03/2024 8/13

Modeling Memory Usage

▪ Memory usage modeling is a way to organize and define
how memory behaves.

▪ It provides structure and rules for how to access and use
addresses in a system.

▪ Memory models are important for concurrent programs
because they define the possible values that a read
operation can return based on the write operations
performed by the program.

▪ They also provide the basic semantics of shared
variables, which are crucial for reasoning about programs
and programming language

Memory Management

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT

26/03/2024 9/13

Memory Optimization
Strategies:

Memory Management

1.Code Size Reduction:
1. Minimize the size of executable code by eliminating redundant or unnecessary instructions.
2. Use compiler optimization flags to reduce code size without sacrificing functionality.
3. Employ techniques like function inlining, loop unrolling, and dead code elimination to streamline

code execution.
2.Data Compression:

1. Compress data stored in memory to reduce memory footprint.
2. Apply compression algorithms such as run-length encoding, Huffman coding, or delta encoding

to efficiently store and retrieve data.
3. Balance compression ratio with decompression overhead to ensure acceptable performance.

3.Memory Pooling:
1. Allocate fixed-size memory blocks from a pre-allocated pool instead of using dynamic memory

allocation.
2. Reduce memory fragmentation and overhead associated with dynamic memory management.
3. Implement custom memory allocators tailored to specific application requirements.

4.Memory Alignment:
1. Align data structures to memory boundaries to optimize memory access.
2. Improve performance by ensuring that data structures are accessed efficiently without

unnecessary padding.
3. Minimize memory waste and enhance cache utilization by aligning data structures appropriately.

5.Selective Compilation:
1. Use conditional compilation to include or exclude features based on system requirements.
2. Enable/disable optional features or modules to reduce memory usage.
3. Customize build configurations for different target platforms or deployment scenarios to optimize

memory allocation.
Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT

26/03/2024 10/13

Real Time case study:

.

Memory Management

In an automotive embedded system, memory management is critical for real-time
performance and reliability. For instance, in an engine control unit (ECU), memory
allocation ensures efficient storage of sensor data, control algorithms, and diagnostic
routines. Static allocation reserves memory for critical functions like ignition timing,
while dynamic allocation handles variable-sized data streams from sensors. Memory
pooling optimizes resource usage, reducing fragmentation and ensuring timely
responses to engine events. By carefully managing memory, the ECU maintains
real-time responsiveness, enhances fuel efficiency, and ensures safe operation,
illustrating the pivotal role of memory management in embedded systems for
automotive applications.

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT

26/03/2024 11/13

Advantages:

▪ Resource Optimization

▪ Reliability and Stability

▪ Real-Time Responsiveness

▪ Space Efficiency

▪ Security Enhancement

▪ Ease of Maintenance

▪ Optimized Performance

Memory Management

Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT

26/03/2024 Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 12/13

Memory Management

Disadvantages:

▪ Complexity Overhead

▪ Overhead in Real-Time Systems

▪ Fragmentation

▪ Memory Leaks

▪ Resource Constraints

▪ Security Risks

▪ Performance Degradation

26/03/2024 Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT 13/13

Assessment

1.What are the disadvantages of memory management?

2.What are the advantages of memory management?

SUMMARY & THANK
YOU

26/03/2024 14/13Memory Management /19ECT312/Embedded systems Design / Ramya E/SNSCT

