

The parivation of displacement function (u)
to (b) For one anterested
bar element based on global co-ordinate
recipies planent with nodes
the displacements at respective nodes. So
u and un arp considered
of freedom of this barrelement.
Ly Company (84)
since the element has two degree's
of freedom it will have two
generalize co-ordinate.
where, as and a, are alobal (01) generalize
co-ordinates.
writing the equal in matrix form
Hence verified " Top] [m 1] =
$= \begin{bmatrix} 1 & n \end{bmatrix} \begin{bmatrix} a & 0 \\ a & 1 \end{bmatrix} - 3 & 0.$

At node 1,

$$u = u_1$$
, $x = 0$

By rode 2,

 $u = u_2$, $x = g$

Sub that values in equiption G .

 $u_1 = a_0$, $g = g$
 $u_2 = a_0 + a_1 + g = g$

Ansarge the equivariant matrix form

 $u_1 = u_2 + g = g$
 $u_2 = u_1 + g = g$
 $u_2 = u_2 + g = g$
 $u_3 = u_4 + g = g$
 $u_4 = degreers of freedom$
 $u_4 = degreers$
 $u_4 = degr$

$u = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$
$= \frac{1}{2} \left[x - x \times \right] \left\{ \begin{array}{c} u_1 \\ u_2 \end{array} \right\}$
= [=x x] { u, }
$u = \left[N, N_2 \right] \left\{ \begin{array}{l} u, \gamma \\ u_2 \end{array} \right\}$
Displacement function $u = N_1 u_1 + N_2 u_2$
shape function N, = 1-7
shape function N2 = 2/2 daras - 0
At node 1: $N = 0$ $N_1 = 1 \left[\frac{1}{2} N_2 = 0 \right]$
P+ node 2: x = 1
P+ node 2: $x = 1$ $N_{12} = 0$ $N_{2} = 0$
The shape function will have a value
equal to unity at the node to which
it belongs and zero value at other node



