

SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB212 - DIGITAL SIGNAL PROCESSING

II YEAR/ IV SEMESTER

UNIT 1 – DISCRETE FOURIER TRANSFORM

TOPIC - Introduction to DFT

EMP&THY

1

• Defects in signals is to identified

2

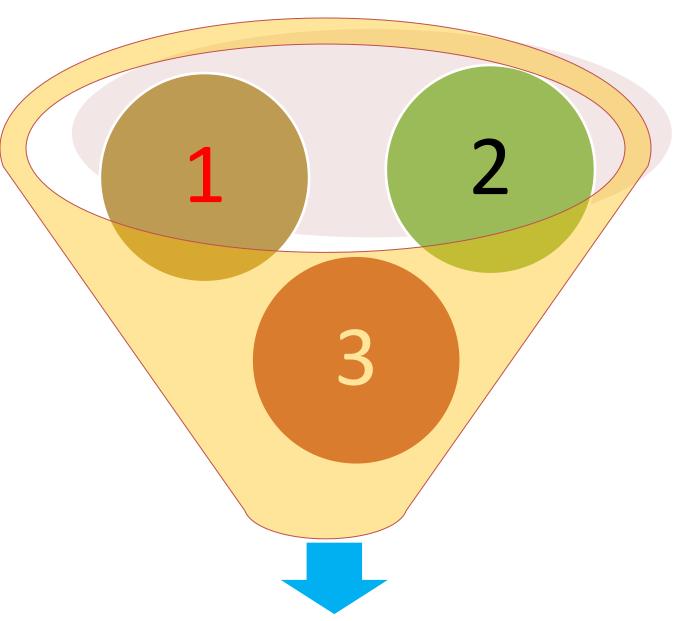
• Conversion from Time domain to frequency domain takes longer time

3

• Frequency domain Information must be extracted

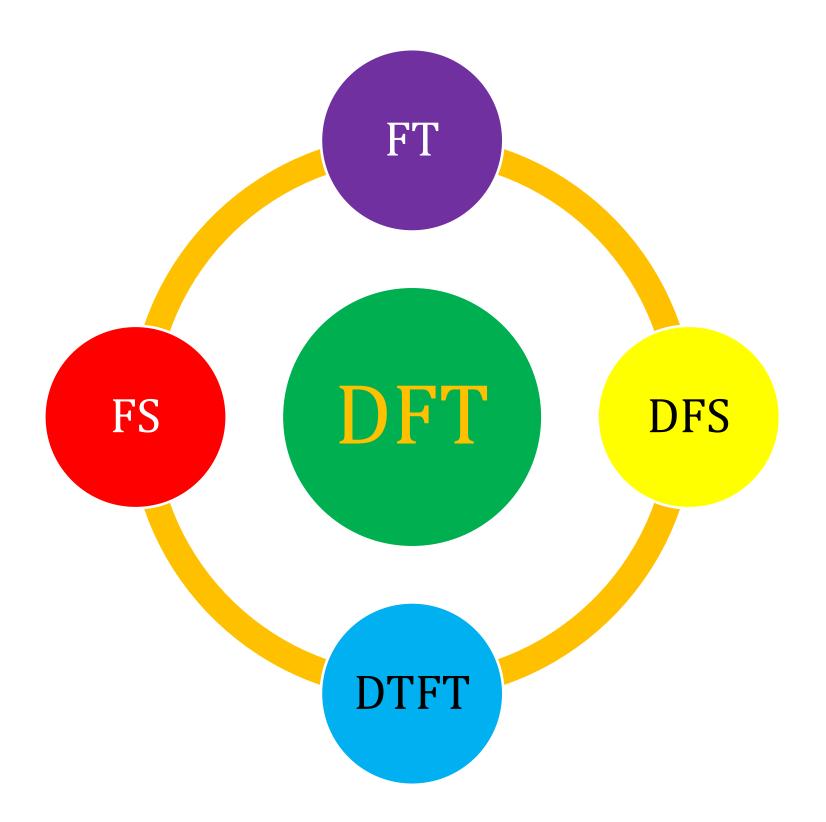
20-Jan-25

DEFINE



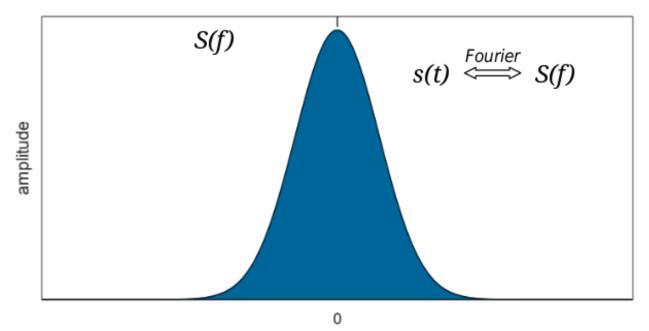
Time to frequency domain conversion and process faster

IDEATE

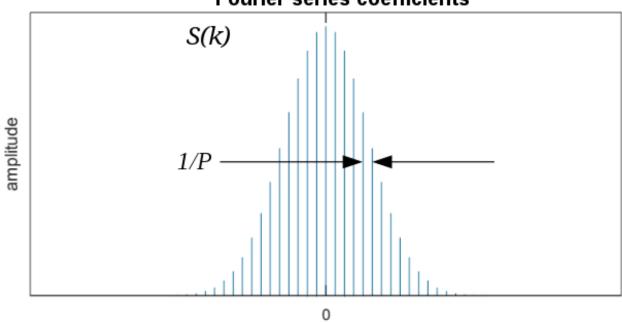


FOURIER COEFFICIENTS REPRESENTATION

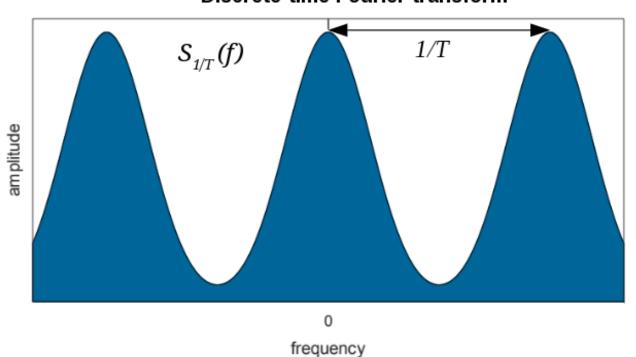
Fourier transform of a function s(t)



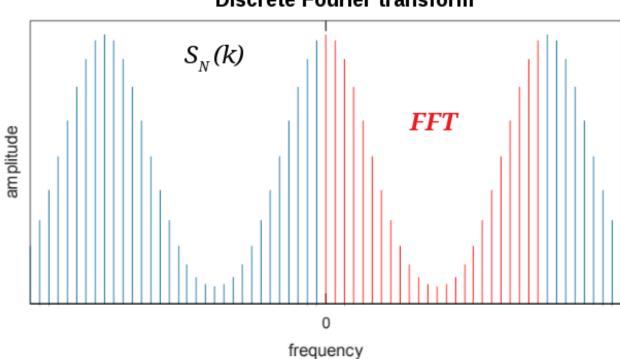
Transform of the periodic summation of s(t) "Fourier series coefficients"



Transform of periodically sampled s(t) "Discrete-time Fourier transform"



Transform of both periodic sampling and periodic summation "Discrete Fourier transform"



For a discrete time sequence we define two classes of Fourier Transforms:

• The DTFT (Discrete Time FT) for sequences having infinite duration,

• The DFT (Discrete FT) for sequences having **finite** duration.

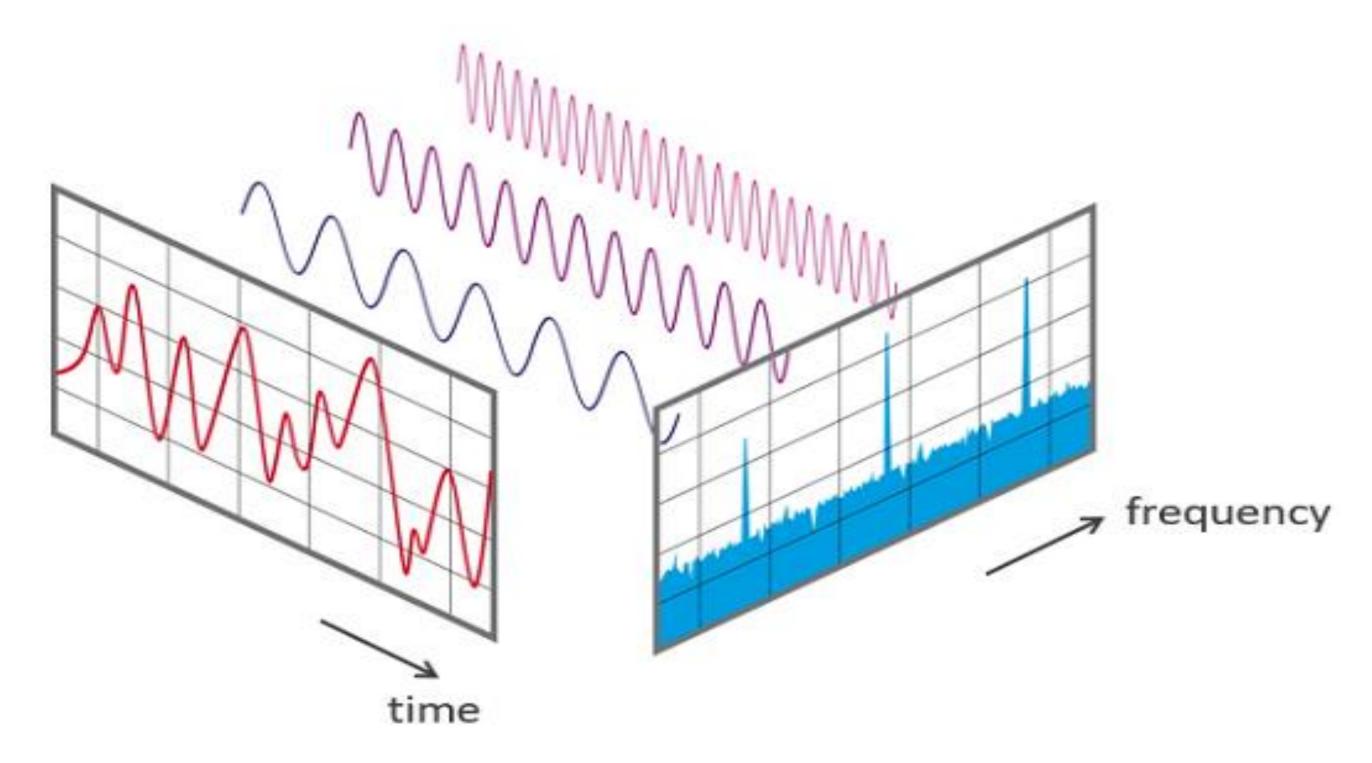
DTFT AND INVERSE DTFT

DTFT

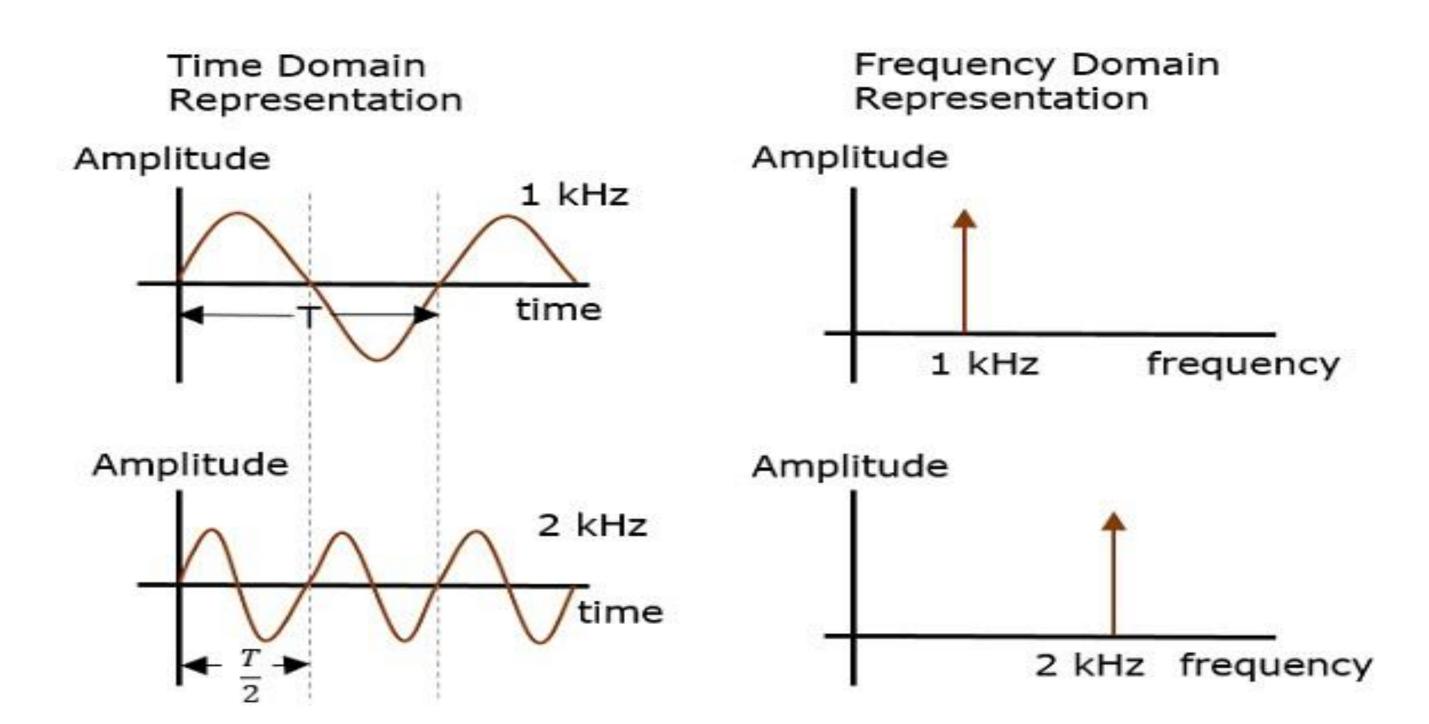
$$X(\omega) = DTFT\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

Inverse DFT

$$x(n) = IDTFT\{X(\omega)\} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(\omega)e^{j\omega n} d\omega$$



REPRESENTATION OF SIGNALS

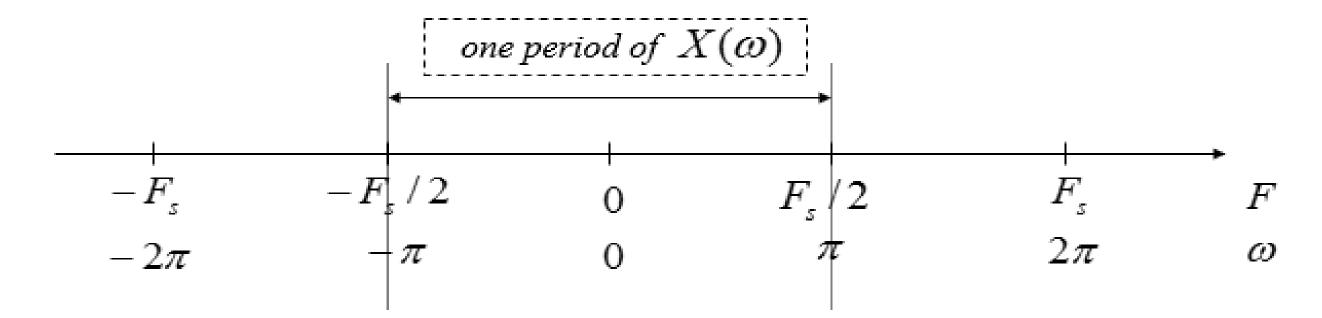


- The DTFT $X(\omega)$ is periodic with period 2π
- The frequency ω is the digital frequency and therefore it is limited to the interval

$$-\pi < \omega < +\pi$$

• The digital frequency ω is a normalized frequency relative to the sampling

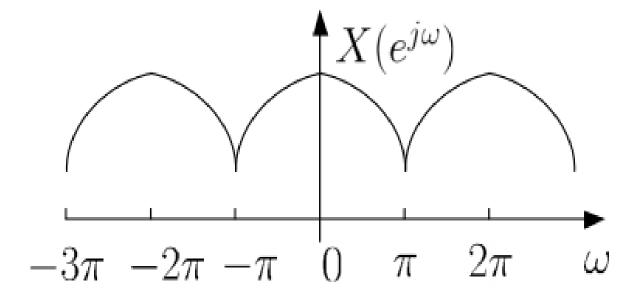
frequency, defined as $\omega = 2\pi \frac{F}{F_s}$



DFT REPRESENTATION

Time Domain

Freq Domain



In Discrete Fourier Transform, Given a finite sequence

$$x = [x(0), x(1), ..., x(N-1)]$$

its Discrete Fourier Transform (DFT) is a finite sequence

$$X = DFT(x) = [X(0), X(1), ..., X(N-1)]$$

Where

$$X(k) = \sum_{n=0}^{N-1} x(n) w_N^{kn}, \quad w_N = e^{-j2\pi/N}$$

$$x \longrightarrow DFT \longrightarrow X$$

INVERSE DISCRETE FOURIER TRANSFORM

In Inverse Discrete Fourier Transform, Given a sequence

$$X = [X(0), X(1), ..., X(N-1)]$$

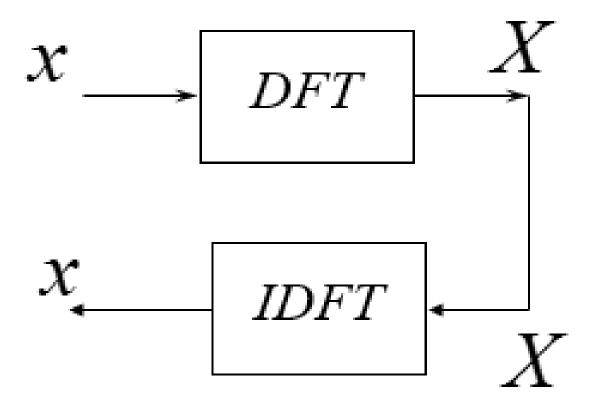
its Inverse Discrete Fourier Transform (IDFT) is a finite sequence

$$x = IDFT(X) = [x(0), x(1), ..., x(N-1)]$$

Where

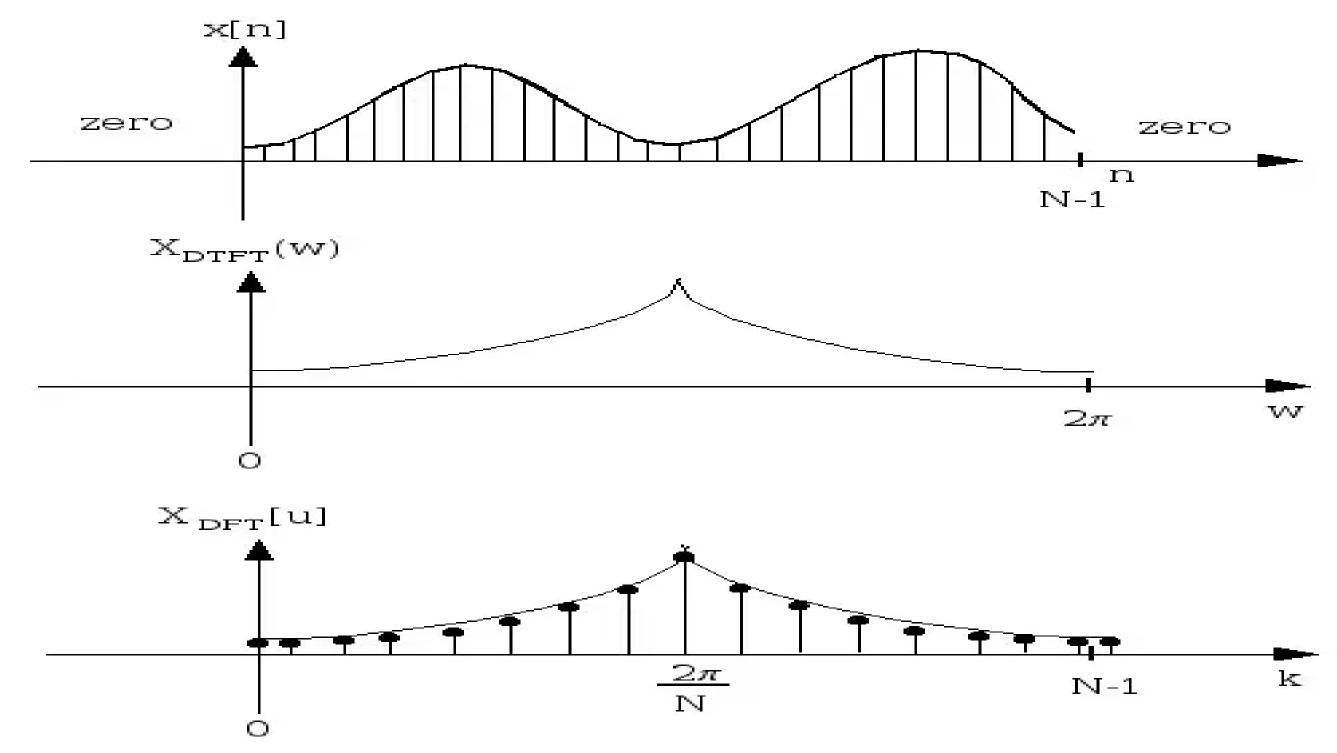
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) w_N^{-kn}, \quad w_N = e^{-j2\pi/N}$$

The DFT and the IDFT form a transform pair.



The DFT is a numerical algorithm, and it can be computed by a digital computer.

REPRESENTATION OF DTFT & DFT



PROPERTIES OF DFT

Property	Time Domain	Frequency Domain
1. Linearity	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$
2. Time-shifting	x[n-m]	$e^{-j2\pi km}X(k)$
3. Frequency-shifting (modulation)	$e^{-j2\pi k_0 n/N}x[n]$	$X(k-k_0)$
4. Time reversal	x[-n]	X(-k)
5. Conjugation	$x^*[n]$	$X^*(-k)$
6. Time-convolution	$x_1[n] \otimes x_2[n]$	$X_1[k]X_2[k]$
7. Frequency-convolution	$x_1[n]x_2[n]$	$\frac{1}{X_1}X_1[k] \otimes X_2[k]$

PPLICTIONS OF DFT

- 1. Spectral Analysis
- 2. Image Processing
- 3. Signal Processing

Other Applications:

- 1. Sound Filtering
- 2. Data Compression
- 3. Partial Differential Equations
- 4. Multiplication of large integers

DIFFERENCE B/W DFT & IDFT

DFT (Analysis transform)	IDFT (Synthesis transform)	
DFT is finite duration discrete	IDFT is inverse DFT which is used to calculate time	
frequency sequence that is obtained	domain representation (Discrete time	
by sampling one period of FT.	sequence) form of x(k).	
DFT equations are applicable to causal finite	IDFT is used basically to determine sample	
duration sequences.	response of a filter for which we know only	
	transfer function.	
Mathematical Equation to calculate	Mathematical Equation to calculate IDFT is given	
DFT is given by	by	
N-1	N-1 :2 II I - / N	
$X(k) = \sum_{i=1}^{N-1} x(n) e^{-j2} \prod_{i=1}^{N-1} kn / N$	$x(n) = 1/N \sum_{i=1}^{N-1} \frac{N-1}{X(k)e^{ij2} \prod_{i=1}^{N-1} kn/N}$	
n=0	n=0	
Thus DFT is given by	In DFT and IDFT difference is of factor 1/N &	
X(k) = [WN][xn]	sign of exponent of twiddle factor.	
	Thus	
	$x(n)=1/N [WN]^{-1}[XK]$	

ASSESSMENT

- 1. Define DFT
- 2. What is meant by IDFT.
- 3. Give some applications of Fourier Transform.
- 4. Define DFT Pair.
- 5. The DTFT (Discrete Time FT) for sequences having ----- duration
- 6. Determine DFT of $x(n) = \{1,0,1,0\}$

THANK YOU