

SNS COLLEGE OF TECHNOLOGY An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING 19ECB212 – DIGITAL SIGNAL PROCESSING

II YEAR/ IV SEMESTER

UNIT 1 - DISCRETE FOURIER TRANSFORM

TOPIC – LINEAR CONVOLUTION

LINEAR CONVOLUTION/19ECB212 - DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

LINE&R CONVOLUTION

- The convolution sum relates the input, output and unit sample response of the discrete time systems
- Linear convolution is a very powerful technique used for the analysis of Linear Time Invariant systems
- x(n) can be expressed as sum of weighted impulses

$$\mathbf{y}(\mathbf{n}) = \mathbf{x}(\mathbf{n}) * \mathbf{h}(\mathbf{n})$$

LINEAR CONVOLUTION

• The behavior of the LTI system is completely characterized by the unit sample response h(n)

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(t)$$

• It is the linear convolution of x(n) and h(n) gives y(n) Inverse Z Transform:

(n-k)

LINEAR CONVOLUTION/19ECB212 – DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

20-Jan-25

REPRESENTATION OF CONVOLUTION

LINEAR CONVOLUTION/19ECB212 – DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

20-Jan-25

LINEAR CONVOLUTION

Four methods available to compute convolution sum:

- 1. Definition Method
- 2. Graphical Method
- 3. Tabulation Method
- 4. Multiplication Method

CONVOLUTION SUM

Four steps involved in computing convolution sum:

- 1. Folding
- 2. Shifting
- 3. Multiplication
- 4. Summation
- Let M be the total no. of samples of x(n) and N be the total no. of samples of

h(n) then the total no. of samples in y(n) be M+N-1

CONVOLUTION SUM

LINEAR CONVOLUTION/19ECB212 – DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

20-Jan-25

CONVOLUTION SUM

			$x = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} $						
			20 21, 1, 1, 2, 1, 19						
			1.	1	1	2	1_	1	
					1	1.	2	1	
			1	I	١	2	١	I	
		2	2	2,	Ŧ	2	2		
	L	١	1	2	٢	I			
١	I	١	2	١	1				
1.	2	4	6	6	7	. 5		31	
				y (n)	= {	, 2, 4	F, b,	6, 7, 5	

LINEAR CONVOLUTION/19ECB212 – DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

20-Jan-25

h (m)= {1, 1, 2, 1}

·, 3, 1 J

1

PROPERTIES OF CONVOLUTION SUM

- It can be classified into
- 1. Commutative Property
- 2. Associative Property
- 3. Distributive Property
- **Commutative :**

y(n) = x(n) * h(n) = h(n) * x(n)

LINEAR CONVOLUTION/19ECB212 – DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

y(n)

y(n)

ASSOCIATIVE PROPERTY

 $[\mathbf{x}(n) * \mathbf{h}_1(n)] * \mathbf{h}_2(n) = \mathbf{x}(n) * [\mathbf{h}_1(n) * \mathbf{h}_2(n)]$

LINEAR CONVOLUTION/19ECB212 – DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

20-Jan-25

$x(n) * h_1(n) + x(n) * h_2(n) = x(n) * [h_1(n) + h_2(n)]$

LINEAR CONVOLUTION/19ECB212 – DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

20-Jan-25

INPUT & OUTPUT TRANSFERENCE

LINEAR CONVOLUTION/19ECB212 – DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

20-Jan-25

GRAPHICAL REPRESENTATION

LINEAR CONVOLUTION/19ECB212 – DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

GRAPHICAL REPRESENTATION

LINEAR CONVOLUTION/19ECB212 – DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

20-Jan-25

MULTIPLIC&TION METHOD

Find	the	convolut	ion Sc	m of	the soop	ience :-		
a a	(m) = S	1,2,3,	4,53	h (m)	- م ل الم علم - م			
		1	2	3	4	5		
				6	Ч	8		
		8	16	24	32	40		
	7	14	21	28	35			
6	12	18	24	30				
6	19	40	61	82	67	40		
		ઝ	(n) = J	6,19,	40, 61,	82, 67,	40Y	

LINEAR CONVOLUTION/19ECB212 – DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

TABULATION METHOD

LINEAR CONVOLUTION/19ECB212 – DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

20-Jan-25

h(n) = {6,7,83

DEFINITION METHOD

$\infty(m) = \{1, 2, 3, 4, 5\}$ h(m) = $\{1, 2, 3, 4, 5\}$
$x_{(0)}=1, x_{(1)}=2, x_{(2)}=3, x_{(3)}=4, x_{(1)}=1$
h(0) = 6, $h(1) = 7$, $h(2) = 8$
[M=5] $[N=3]$ $y(m)=M+N-$
$y(m) = \frac{4}{5} x(k) h(m-k)$ k=0 $x(k) h(m-k)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
n=1 $S(1) = \underbrace{\pm}_{k=0} S(k) h(1-k) \rightarrow S(1) = 10$
$y_{(2)} = \frac{4}{2} x(k) h(2-k) \rightarrow y(2) = k=0$
n=3 y(3)= ± x(k) h(3-k) + y(3)=
n=4 $y(A) = \frac{2}{k\pi} x(k) h(A-k) = y(A)$
n=5 ×(5) - ± x(k) h(5-k) → ×(1)
$N=b$ $g(b) = \underbrace{\Xi}_{k=0} \pi(k) h(b-k) \Rightarrow g(b)$
y(m) = 26, 19, 40, 61, 82, 67, 40

20-Jan-25

(4) = 5

·1 > 5+3-1 > 7 ples [n voules o to]

٦

40 61

- 82

F0 = 67

(b) = **40**

ન્દુ

ASSESSMENT

- 1. Define convolution sum.
- 2. Total no. of samples in y(n) will be ------
- 3. List the methods involved to compute convolution sum.
- 4. y(n) = x(n) * h(n) = h(n) * x(n) is defined as ------ property
- 5. Mention the steps involved to compute linear convolution.
- 6. List the properties of convolution sum.

THANK YOU

20-Jan-25

LINEAR CONVOLUTION/19ECB212 – DIGITAL SIGNAL PROCESSING/ J.PRABAKARAN/ECE /SNSCT

