
1

UNIT II

RELATIONAL MODEL

Rule 1: Information rule

This rule states that all information (data), which is stored in the database, must be a value of

some table cell. Everything in a database must be stored in table formats. This information can

be user data or meta-data.

Rule 2: Guaranteed Access rule

This rule states that every single data element (value) is guaranteed to be accessible logically

with combination of table-name, primary-key (row value) and attribute-name (column value). No

other means, such as pointers, can be used to access data.

Rule 3: Systematic Treatment of NULL values

This rule states the NULL values in the database must be given a systematic treatment. As a

NULL may have several meanings, i.e. NULL can be interpreted as one the following: data is

missing, data is not known, data is not applicable etc.

Rule 4: Active online catalog

This rule states that the structure description of whole database must be stored in an online

catalog, i.e. data dictionary, which can be accessed by the authorized users. Users can use the

same query language to access the catalog which they use to access the database itself.

Rule 5: Comprehensive data sub-language rule

This rule states that a database must have a support for a language which has linear syntax which

is capable of data definition, data manipulation and transaction management operations.

Database can be accessed by means of this language only, either directly or by means of some

application. If the database can be accessed or manipulated in some way without any help of this

language, it is then a violation.

Rule 6: View updating rule

This rule states that all views of database, which can theoretically be updated, must also be

updatable by the system.

Rule 7: High-level insert, update and delete rule

This rule states the database must employ support high-level insertion, updation and deletion.

This must not be limited to a single row that is, it must also support union, intersection and

minus operations to yield sets of data records.

2

Rule 8: Physical data independence

This rule states that the application should not have any concern about how the data is physically

stored. Also, any change in its physical structure must not have any impact on application.

Rule 9: Logical data independence

This rule states that the logical data must be independent of its user’s view (application). Any

change in logical data must not imply any change in the application using it. For example, if two

tables are merged or one is split into two different tables, there should be no impact the change

on user application. This is one of the most difficult rule to apply.

Rule 10: Integrity independence

This rule states that the database must be independent of the application using it. All its integrity

constraints can be independently modified without the need of any change in the application.

This rule makes database independent of the front-end application and its interface.

Rule 11: Distribution independence

This rule states that the end user must not be able to see that the data is distributed over various

locations. User must also see that data is located at one site only. This rule has been proven as a

foundation of distributed database systems.

Rule 12: Non-subversion rule

This rule states that if a system has an interface that provides access to low level records, this

interface then must not be able to subvert the system and bypass security and integrity

constraints.

Relational data model is the primary data model, which is used widely around the world for data

storage and processing. This model is simple and have all the properties and capabilities required

to process data with storage efficiency.

Concepts

Tables: In relation data model, relations are saved in the format of Tables. This format stores the

relation among entities. A table has rows and columns, where rows represent records and

columns represents the attributes.

Tuple: A single row of a table, which contains a single record for that relation is called a tuple.

Relation instance: A finite set of tuples in the relational database system represents relation

instance. Relation instances do not have duplicate tuples.

Relation schema: This describes the relation name (table name), attributes and their names.

Relation key: Each row has one or more attributes which can identify the row in the relation

(table) uniquely, is called the relation key.

3

Attribute domain: Every attribute has some pre-defined value scope, known as attribute

domain.

Constraints

Every relation has some conditions that must hold for it to be a valid relation. These conditions

are called Relational Integrity Constraints. There are three main integrity constraints.

 Key Constraints

 Domain constraints

 Referential integrity constraints

Key Constraints:

There must be at least one minimal subset of attributes in the relation, which can identify a tuple

uniquely. This minimal subset of attributes is called key for that relation. If there are more than

one such minimal subsets, these are called candidate keys.

Key constraints forces that:

 in a relation with a key attribute, no two tuples can have identical value for key attributes.

 key attribute can not have NULL values.

Key constrains are also referred to as Entity Constraints.

Domain constraints

Attributes have specific values in real-world scenario. For example, age can only be positive

integer. The same constraints has been tried to employ on the attributes of a relation. Every

attribute is bound to have a specific range of values. For example, age can not be less than zero

and telephone number can not be a outside 0-9.

Referential integrity constraints

This integrity constraints works on the concept of Foreign Key. A key attribute of a relation can

be referred in other relation, where it is called foreign key.

Referential integrity constraint states that if a relation refers to an key attribute of a different or

same relation, that key element must exists.

Relational database systems are expected to be equipped by a query language that can assist its

user to query the database instances. This way its user empowers itself and can populate the

results as required. There are two kinds of query languages, relational algebra and relational

calculus.

4

Relational algebra

Relational algebra is a procedural query language, which takes instances of relations as input and

yields instances of relations as output. It uses operators to perform queries. An operator can be

either unary or binary. They accept relations as their input and yields relations as their output.

Relational algebra is performed recursively on a relation and intermediate results are also

considered relations.

Fundamental operations of Relational algebra:

 Select

 Project

 Union

 Set different

 Cartesian product

 Rename

These are defined briefly as follows:

Select Operation (σ)

Selects tuples that satisfy the given predicate from a relation.

Notation σp(r)

Where p stands for selection predicate and r stands for relation. p is prepositional logic formulae

which may use connectors like and, or and not. These terms may use relational operators like:

=, ≠, ≥, < , >, ≤.

For example:

σsubject="database"(Books)

Output : Selects tuples from books where subject is 'database'.

σsubject="database" and price="450"(Books)

Output : Selects tuples from books where subject is 'database' and 'price' is 450.

σsubject="database" and price < "450" or year > "2010"(Books)

Output : Selects tuples from books where subject is 'database' and 'price' is 450 or the publication

year is greater than 2010, that is published after 2010.

Project Operation (∏)

Projects column(s) that satisfy given predicate.

5

Notation: ∏A1, A2, An (r)

Where a1, a2 , an are attribute names of relation r.

Duplicate rows are automatically eliminated, as relation is a set.

for example:

 ∏subject, author (Books)

Selects and projects columns named as subject and author from relation Books.

Union Operation (∪)

Union operation performs binary union between two given relations and is defined as:

 r ∪ s = { t | t ∈ r or t ∈ s}

Notion: r U s

Where r and s are either database relations or relation result set (temporary relation).

For a union operation to be valid, the following conditions must hold:

 r, s must have same number of attributes.

 Attribute domains must be compatible.

Duplicate tuples are automatically eliminated.

 ∏ author (Books) ∪ ∏ author (Articles)

Output : Projects the name of author who has either written a book or an article or both.

Set Difference (−)

The result of set difference operation is tuples which present in one relation but are not in the

second relation.

Notation: r − s

Finds all tuples that are present in r but not s.

 ∏ author (Books) − ∏ author (Articles)

Output: Results the name of authors who has written books but not articles.

Cartesian Product (Χ)

Combines information of two different relations into one.

6

Notation: r Χ s

Where r and s are relations and there output will be defined as:

r Χ s = { q t | q ∈ r and t ∈ s}

 ∏ author = 'tutorialspoint'(Books Χ Articles)

Output : yields a relation as result which shows all books and articles written by tutorialspoint.

Rename operation (ρ)

Results of relational algebra are also relations but without any name. The rename operation

allows us to rename the output relation. rename operation is denoted with small greek letter rho ρ

Notation: ρ x (E)

Where the result of expression E is saved with name of x.

Additional operations are:

 Set intersection

 Assignment

 Natural join

Relational Calculus

In contrast with Relational Algebra, Relational Calculus is non-procedural query language, that

is, it tells what to do but never explains the way, how to do it.

Relational calculus exists in two forms:

Tuple relational calculus (TRC)

Filtering variable ranges over tuples

Notation: { T | Condition }

Returns all tuples T that satisfies condition.

For Example:

{ T.name | Author(T) AND T.article = 'database' }

Output: returns tuples with 'name' from Author who has written article on 'database'.

TRC can be quantified also. We can use Existential (∃)and Universal Quantifiers (∀).

7

For example:

{ R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}

Output : the query will yield the same result as the previous one.

Domain relational calculus (DRC)

In DRC the filtering variable uses domain of attributes instead of entire tuple values (as done in

TRC, mentioned above).

Notation:

{ a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}

where a1, a2 are attributes and P stands for formulae built by inner attributes.

For example:

{< article, page, subject > | ∈ TutorialsPoint ∧ subject = 'database'}

Output: Yields Article, Page and Subject from relation TutorialsPoint where Subject is database.

Just like TRC, DRC also can be written using existential and universal quantifiers. DRC also

involves relational operators.

Expression power of Tuple relation calculus and Domain relation calculus is equivalent to

Relational Algebra.

ER Model when conceptualized into diagrams gives a good overview of entity-relationship,

which is easier to understand. ER diagrams can be mapped to Relational schema that is, it is

possible to create relational schema using ER diagram. Though we cannot import all the ER

constraints into Relational model but an approximate schema can be generated.

There are more than one processes and algorithms available to convert ER Diagrams into

Relational Schema. Some of them are automated and some of them are manual process. We may

focus here on the mapping diagram contents to relational basics.

ER Diagrams mainly comprised of:

 Entity and its attributes

 Relationship, which is association among entities.

Mapping Entity

An entity is a real world object with some attributes.

Mapping Process (Algorithm):

8

 Create table for each entity

 Entity's attributes should become fields of tables with their respective data types.

 Declare primary key

Mapping relationship

A relationship is association among entities.

Mapping process (Algorithm):

 Create table for a relationship

 Add the primary keys of all participating Entities as fields of table with their respective

data types.

 If relationship has any attribute, add each attribute as field of table.

 Declare a primary key composing all the primary keys of participating entities.

 Declare all foreign key constraints.

Mapping Weak Entity Sets

A weak entity sets is one which does not have any primary key associated with it.

9

Mapping process (Algorithm):

 Create table for weak entity set

 Add all its attributes to table as field

 Add the primary key of identifying entity set

 Declare all foreign key constraints

Mapping hierarchical entities

ER specialization or generalization comes in the form of hierarchical entity sets.

Mapping process (Algorithm):

10

 Create tables for all higher level entities

 Create tables for lower level entities

 Add primary keys of higher level entities in the table of lower level entities

 In lower level tables, add all other attributes of lower entities.

 Declare primary key of higher level table the primary key for lower level table

 Declare foreign key constraints.

SQL Overview

SQL is a programming language for Relational Databases. It is designed over relational algebra

and tuple relational calculus. SQL comes as a package with all major distributions of RDBMS.

SQL comprises both data definition and data manipulation languages. Using the data definition

properties of SQL, one can design and modify database schema whereas data manipulation

properties allows SQL to store and retrieve data from database.

Data definition Language

SQL uses the following set of commands to define database schema:

CREATE

11

Creates new databases, tables and views from RDBMS

For example:
Create database tutorialspoint;

Create table article;

Create view for_students;

DROP

Drop commands deletes views, tables and databases from RDBMS
Drop object_type object_name;

Drop database tutorialspoint;

Drop table article;

Drop view for_students;

ALTER

Modifies database schema.
Alter object_type object_name parameters;

for example:
Alter table article add subject varchar;

This command adds an attribute in relation article with name subject of string type.

Data Manipulation Language

SQL is equipped with data manipulation language. DML modifies the database instance by

inserting, updating and deleting its data. DML is responsible for all data modification in

databases. SQL contains the following set of command in DML section:

 SELECT/FROM/WHERE

 INSERT INTO/VALUES

 UPDATE/SET/WHERE

 DELETE FROM/WHERE

These basic constructs allows database programmers and users to enter data and information into

the database and retrieve efficiently using a number of filter options.

SELECT/FROM/WHERE

 SELECT

This is one of the fundamental query command of SQL. It is similar to projection

operation of relational algebra. It selects the attributes based on the condition described

by WHERE clause.

 FROM

12

This clause takes a relation name as an argument from which attributes are to be

selected/projected. In case more than one relation names are given this clause

corresponds to cartesian product.

 WHERE

This clause defines predicate or conditions which must match in order to qualify the

attributes to be projected.

For example:
Select author_name

From book_author

Where age > 50;

This command will project names of author’s from book_author relation whose age is

greater than 50.

INSERT INTO/VALUES

This command is used for inserting values into rows of table (relation).

yntax is
INSERT INTO table (column1 [, column2, column3 ...]) VALUES (value1 [,

value2, value3 ...])

Or
INSERT INTO table VALUES (value1, [value2, ...])

For Example:
INSERT INTO tutorialspoint (Author, Subject) VALUES ("anonymous",

"computers");

UPDATE/SET/WHERE

This command is used for updating or modifying values of columns of table (relation).

Syntax is
UPDATE table_name SET column_name = value [, column_name = value ...] [WHERE

condition]

For example:
UPDATE tutorialspoint SET Author="webmaster" WHERE Author="anonymous";

DELETE/FROM/WHERE

This command is used for removing one or more rows from table (relation).

Syntax is

13

DELETE FROM table_name [WHERE condition];

For example:
DELETE FROM tutorialspoints

 WHERE Author="unknown";

For in-depth and practical knowledge of SQL.

UNIT IV

DBMS Normalization
Functional Dependency

Functional dependency (FD) is set of constraints between two attributes in a relation. Functional

dependency says that if two tuples have same values for attributes A1, A2,..., An then those two

tuples must have to have same values for attributes B1, B2, ..., Bn.

Functional dependency is represented by arrow sign (→), that is X→Y, where X functionally

determines Y. The left hand side attributes determines the values of attributes at right hand side.

Armstrong's Axioms

If F is set of functional dependencies then the closure of F, denoted as F+, is the set of all

functional dependencies logically implied by F. Armstrong's Axioms are set of rules, when

applied repeatedly generates closure of functional dependencies.

 Reflexive rule: If alpha is a set of attributes and beta is_subset_of alpha, then alpha holds

beta.

 Augmentation rule: if a → b holds and y is attribute set, then ay → by also holds. That

is adding attributes in dependencies, does not change the basic dependencies.

 Transitivity rule: Same as transitive rule in algebra, if a → b holds and b → c holds then

a → c also hold. a → b is called as a functionally determines b.

Trivial Functional Dependency

 Trivial: If an FD X → Y holds where Y subset of X, then it is called a trivial FD. Trivial

FDs are always hold.

 Non-trivial: If an FD X → Y holds where Y is not subset of X, then it is called non-

trivial FD.

 Completely non-trivial: If an FD X → Y holds where x intersect Y = Φ, is said to be

completely non-trivial FD.

14

Normalization

If a database design is not perfect it may contain anomalies, which are like a bad dream for

database itself. Managing a database with anomalies is next to impossible.

 Update anomalies: if data items are scattered and are not linked to each other properly,

then there may be instances when we try to update one data item that has copies of it

scattered at several places, few instances of it get updated properly while few are left with

there old values. This leaves database in an inconsistent state.

 Deletion anomalies: we tried to delete a record, but parts of it left undeleted because of

unawareness, the data is also saved somewhere else.

 Insert anomalies: we tried to insert data in a record that does not exist at all.

Normalization is a method to remove all these anomalies and bring database to consistent state

and free from any kinds of anomalies.

First Normal Form:

This is defined in the definition of relations (tables) itself. This rule defines that all the attributes

in a relation must have atomic domains. Values in atomic domain are indivisible units.

15

Second Normal Form:

Before we learn about second normal form, we need to understand the following:

 Prime attribute: an attribute, which is part of prime-key, is prime attribute.

 Non-prime attribute: an attribute, which is not a part of prime-key, is said to be a non-

prime attribute.

Second normal form says, that every non-prime attribute should be fully functionally dependent

on prime key attribute. That is, if X → A holds, then there should not be any proper subset Y of

X, for that Y → A also holds.

We see here in Student_Project relation that the prime key attributes are Stu_ID and Proj_ID.

According to the rule, non-key attributes, i.e. Stu_Name and Proj_Name must be dependent upon

both and not on any of the prime key attribute individually. But we find that Stu_Name can be

identified by Stu_ID and Proj_Name can be identified by Proj_ID independently. This is called

partial dependency, which is not allowed in Second Normal Form.

We broke the relation in two as depicted in the above picture. So there exists no partial

dependency.

16

Third Normal Form:

For a relation to be in Third Normal Form, it must be in Second Normal form and the following

must satisfy:

 No non-prime attribute is transitively dependent on prime key attribute

 For any non-trivial functional dependency, X → A, then either

 X is a superkey or,

 A is prime attribute.

We find that in above depicted Student_detail relation, Stu_ID is key and only prime key

attribute. We find that City can be identified by Stu_ID as well as Zip itself. Neither Zip is a

superkey nor City is a prime attribute. Additionally, Stu_ID → Zip → City, so there exists

transitive dependency.

We broke the relation as above depicted two relations to bring it into 3NF.

Boyce-Codd Normal Form:

BCNF is an extension of Third Normal Form in strict way. BCNF states that

 For any non-trivial functional dependency, X → A, then X must be a super-key.

17

In the above depicted picture, Stu_ID is super-key in Student_Detail relation and Zip is super-

key in ZipCodes relation. So,

Stu_ID → Stu_Name, Zip

And

Zip → City

Confirms, that both relations are in BCNF.

DBMS Joins

We understand the benefits of Cartesian product of two relation, which gives us all the possible

tuples that are paired together. But Cartesian product might not be feasible for huge relations

where number of tuples are in thousands and the attributes of both relations are considerable

large.

Join is combination of Cartesian product followed by selection process. Join operation pairs two

tuples from different relations if and only if the given join condition is satisfied.

Following section should describe briefly about join types:

Theta (θ) join

θ in Theta join is the join condition. Theta joins combines tuples from different relations

provided they satisfy the theta condition.

Notation:
R1 ⋈θ R2

R1 and R2 are relations with their attributes (A1, A2, .., An) and (B1, B2,.. ,Bn) such that no

attribute matches that is R1 ∩ R2 = Φ Here θ is condition in form of set of conditions C.

Theta join can use all kinds of comparison operators.

Student

SID Name Std

101 Alex 10

102 Maria 11

[Table: Student Relation]

Subjects

Class Subject

10 Math

10 English

18

11 Music

11 Sports

[Table: Subjects Relation]

Student_Detail =

STUDENT ⋈Student.Std = Subject.Class SUBJECT

Student_detail

SID Name Std Class Subject

101 Alex 10 10 Math

101 Alex 10 10 English

102 Maria 11 11 Music

102 Maria 11 11 Sports

[Table: Output of theta join]

Equi-Join

When Theta join uses only equality comparison operator it is said to be Equi-Join. The above

example conrresponds to equi-join

Natural Join (⋈)

Natural join does not use any comparison operator. It does not concatenate the way Cartesian

product does. Instead, Natural Join can only be performed if the there is at least one common

attribute exists between relation. Those attributes must have same name and domain.

Natural join acts on those matching attributes where the values of attributes in both relation is

same.

Courses

CID Course Dept

CS01 Database CS

ME01 Mechanics ME

EE01 Electronics EE

[Table: Relation Courses]

HoD

Dept Head

CS Alex

ME Maya

EE Mira

[Table: Relation HoD]

Courses ⋈ HoD

Dept CID Course Head

19

CS CS01 Database Alex

ME ME01 Mechanics Maya

EE EE01 Electronics Mira

[Table: Relation Courses ⋈ HoD]

Outer Joins

All joins mentioned above, that is Theta Join, Equi Join and Natural Join are called inner-joins.

An inner-join process includes only tuples with matching attributes, rest are discarded in

resulting relation. There exists methods by which all tuples of any relation are included in the

resulting relation.

There are three kinds of outer joins:

Left outer join (R S)

All tuples of Left relation, R, are included in the resulting relation and if there exists tuples in R

without any matching tuple in S then the S-attributes of resulting relation are made NULL.

Left

A B

100 Database

101 Mechanics

102 Electronics

[Table: Left Relation]

Right

A B

100 Alex

102 Maya

104 Mira

[Table: Right Relation]

Courses HoD

A B C D

100 Database 100 Alex

101 Mechanics --- ---

102 Electronics 102 Maya

[Table: Left outer join output]

Right outer join: (R S)

All tuples of the Right relation, S, are included in the resulting relation and if there exists tuples

in S without any matching tuple in R then the R-attributes of resulting relation are made NULL.

20

Courses HoD

A B C D

100 Database 100 Alex

102 Electronics 102 Maya

--- --- 104 Mira

[Table: Right outer join output]

Full outer join: (R S)

All tuples of both participating relations are included in the resulting relation and if there no

matching tuples for both relations, their respective unmatched attributes are made NULL.

Courses HoD

A B C D

100 Database 100 Alex

101 Mechanics --- ---

102 Electronics 102 Maya

--- --- 104 Mira

[Table: Full outer join output]

Complex SQL Queries

1. Employees Table

This table is used in many examples, such as GROUP BY, HAVING, SELECT INTO, etc.

employee_id employee_name department salary

1 John Doe HR 60000

2 Jane Smith IT 75000

3 Sam Brown IT 85000

4 Lisa White HR 45000

5 James Black Finance 70000

6 Emily Green IT 95000

7 Michael Blue HR 40000

8 Sarah Gray Finance 65000

2. Department Table

This is used for examples of EXISTS and some subqueries.

department_id department_name

1 HR

2 IT

3 Finance

21

3. Employees Backup Table

This table might be created via SELECT INTO and INSERT INTO SELECT.

employee_name salary

John Doe 60000

Jane Smith 75000

Sam Brown 85000

Lisa White 45000

James Black 70000

Emily Green 95000

Michael Blue 40000

Sarah Gray 65000

4. Employee Salary Range Query Result (using CASE)

employee_name salary_range

John Doe High

Jane Smith High

Sam Brown High

Lisa White Medium

James Black High

Emily Green High

Michael Blue Low

Sarah Gray Medium

5. Employees Table after NULL Handling (using COALESCE)

Assume that salary has some NULL values in certain rows.

employee_id employee_name department salary

1 John Doe HR 60000

2 Jane Smith IT NULL

3 Sam Brown IT 85000

4 Lisa White HR 45000

5 James Black Finance NULL

6 Emily Green IT 95000

7 Michael Blue HR 40000

8 Sarah Gray Finance 65000

22

Using the COALESCE() function to replace NULL with 0 for salaries would give the following

output:

employee_name salary

John Doe 60000

Jane Smith 0

Sam Brown 85000

Lisa White 45000

James Black 0

Emily Green 95000

Michael Blue 40000

Sarah Gray 65000

6. Stored Procedure Query Result (Get Employees by Department)

If you execute the following stored procedure:

EXEC GetEmployeesByDepartment 'IT';

It would return:

employee_name

Jane Smith

Sam Brown

Emily Green

7. Employees Table with a Subquery (using EXISTS)

When checking if employees belong to any department (using the EXISTS operator):

employee_name

John Doe

Jane Smith

Sam Brown

Lisa White

James Black

Emily Green

Michael Blue

Sarah Gray

(The query would return all employees who belong to a department, so all rows are returned

because every employee is assigned to a department.)

23

8. Employees Table (with Salary Comparison using ANY or ALL)

Using ANY:

If we check if an employee’s salary is greater than any salary in the 'HR' department:

SELECT employee_name FROM employees WHERE salary > ANY (SELECT salary FROM

employees WHERE department = 'HR');

This query would return employees whose salary is greater than any HR employee's salary.

employee_name

Jane Smith

Sam Brown

Emily Green

Using ALL:

If we check if an employee’s salary is greater than all salaries in the 'HR' department:

SELECT employee_name FROM employees WHERE salary > ALL (SELECT salary FROM

employees WHERE department = 'HR');

This query would return employees whose salary is greater than all HR employees’ salaries.

employee_name

Sam Brown

Emily Green

1. SQL GROUP BY Statement

 Purpose: The GROUP BY statement groups rows that have the same values into summary rows,
such as total, average, count, etc.

Query:

SELECT department, COUNT(*) AS employee_count

FROM employees

GROUP BY department;

Result Table:

department employee_count

HR 3

IT 3

Finance 2

Explanation: Groups employees by department and counts how many employees are in each

department.

24

2. SQL HAVING Clause

 Purpose: The HAVING clause is used to filter records after grouping with GROUP BY. It works
with aggregate functions.

Query:
sql

SELECT department, COUNT(*) AS employee_count

FROM employees

GROUP BY department

HAVING COUNT(*) > 2;

Result Table:

department employee_count

IT 3

Explanation: Filters out departments with less than or equal to 2 employees, leaving only the

"IT" department.

3. SQL EXISTS Operator

 Purpose: The EXISTS operator checks if a subquery returns any rows. It returns TRUE if the
subquery returns one or more records.

Query:
sql

SELECT employee_name

FROM employees e

WHERE EXISTS (

 SELECT 1

 FROM department d

 WHERE d.department_id = e.department_id

);

Result Table:

employee_name

John Doe

Jane Smith

Sam Brown

Lisa White

James Black

Emily Green

Michael Blue

Sarah Gray

Explanation: This query checks if each employee has an associated department in the

department table. It will return all employees since all employees belong to a department.

25

4. SQL ANY and ALL Operators

 Purpose: ANY and ALL are used to compare a value with a set of results from a subquery.
 ANY: Checks if the condition is met for any of the values returned by the subquery.
 ALL: Checks if the condition is met for all of the values returned by the subquery.

Query for ANY:

sql

SELECT employee_name

FROM employees

WHERE salary > ANY (

 SELECT salary

 FROM employees

 WHERE department = 'HR'

);

Result Table for ANY:

employee_name

Jane Smith

Sam Brown

Emily Green

Explanation: This query returns employees whose salary is greater than any salary in the HR

department.

Query for ALL:

sql

SELECT employee_name

FROM employees

WHERE salary > ALL (

 SELECT salary

 FROM employees

 WHERE department = 'HR'

);

Result Table for ALL:

employee_name

Sam Brown

Emily Green

Explanation: This query returns employees whose salary is greater than all salaries in the HR

department.

26

5. SQL SELECT INTO Statement

 Purpose: The SELECT INTO statement creates a new table and inserts the result set from a
query into it.

SELECT employee_name, salary INTO employees_backup

FROM employees;

Result Table (employees_backup):

employee_name salary

John Doe 60000

Jane Smith 75000

Sam Brown 85000

Lisa White 45000

James Black 70000

Emily Green 95000

Michael Blue 40000

Sarah Gray 65000

Explanation: This query creates a new table (employees_backup) and inserts data from the

employees table into it.

6. SQL INSERT INTO SELECT Statement
 Purpose: The INSERT INTO SELECT statement allows you to insert data into a table from the

result of a query.
INSERT INTO employees_backup (employee_name, salary)

SELECT employee_name, salary

FROM employees

WHERE department = 'HR';

Result Table (employees_backup):

employee_name salary

John Doe 60000

Jane Smith 75000

Sam Brown 85000

Lisa White 45000

James Black 70000

Emily Green 95000

Michael Blue 40000

Sarah Gray 65000

John Doe 60000

Lisa White 45000

Michael Blue 40000

Explanation: This query inserts employees from the HR department into the

employees_backup table. These rows are added again, making it a duplicate.

27

7. SQL CASE Expression

 Purpose: The CASE expression allows you to return a value based on conditions. It can be used
in SELECT, UPDATE, or DELETE statements.

Query:
sql

SELECT employee_name,

 CASE

 WHEN salary > 50000 THEN 'High'

 WHEN salary BETWEEN 30000 AND 50000 THEN 'Medium'

 ELSE 'Low'

 END AS salary_range

FROM employees;

Result Table:

employee_name salary_range

John Doe High

Jane Smith High

Sam Brown High

Lisa White Medium

James Black High

Emily Green High

Michael Blue Low

Sarah Gray Medium

Explanation: The query categorizes employees into "High", "Medium", and "Low" salary

ranges.

8. SQL NULL Functions
 Purpose: Functions like COALESCE() or ISNULL() are used to handle NULL values in SQL

queries.

Query (Using COALESCE):
sql

SELECT employee_name, COALESCE(salary, 0) AS salary

FROM employees;

Result Table:

employee_name salary

John Doe 60000

Jane Smith 0

Sam Brown 85000

Lisa White 45000

James Black 0

Emily Green 95000

Michael Blue 40000

Sarah Gray 65000

Explanation: Replaces NULL values in the salary column with 0 using COALESCE().

28

9. SQL Stored Procedures for SQL Server

 Purpose: A stored procedure is a set of SQL statements that can be executed as a single unit to
perform a specific task.

Example Stored Procedure:

sql

CREATE PROCEDURE GetEmployeesByDepartment

@department_name VARCHAR(50)

AS

BEGIN

 SELECT employee_name, department

 FROM employees

 WHERE department = @department_name;

END;

Calling the Stored Procedure:

sql

EXEC GetEmployeesByDepartment 'IT';

Result Table:

employee_name

Jane Smith

Sam Brown

Emily Green

Explanation: The stored procedure GetEmployeesByDepartment takes a department name as

input and returns employees in that department.

10. SQL Comments

 Purpose: Comments are used to document SQL code and improve readability. Comments are
ignored during execution.

Example:

sql

-- This query retrieves all employees from HR

SELECT employee_name

FROM employees

WHERE department = 'HR';

29

Result Table:

employee_name

John Doe

Lisa White

Michael Blue

Explanation: The query is the same as shown earlier for selecting employees from the HR

department. The comment is ignored during query execution.

11. SQL Operators

 Purpose: Operators in SQL are used to perform operations on data, such as comparison, logical
operations, etc.

Common SQL Operators:

 =, >, <, >=, <=, <> (Comparison Operators)
 AND, OR, NOT (Logical Operators)
 IN, BETWEEN, LIKE (Range and Pattern Matching)

Example (Using IN Operator):

sql

SELECT employee_name

FROM employees

WHERE department IN ('HR', 'IT');

Result Table:

employee_name

John Doe

Jane Smith

Sam Brown

Lisa White

Emily Green

Explanation: This query returns employees working in the 'HR' or 'IT' department using the IN

operator.

Here are some complex SQL queries along with their answers using example data and

explanations:

30

1. Find the Employees with Highest Salary in Each Department

Problem:

You have a table Employees with columns employee_id, employee_name, salary, and

department_id. You want to find the employee with the highest salary in each department.

SQL Query:
SELECT department_id, employee_name, salary

FROM (

 SELECT department_id, employee_name, salary,

 RANK() OVER (PARTITION BY department_id ORDER BY salary DESC) AS

rank

 FROM Employees

) AS ranked_employees

WHERE rank = 1;

Explanation:

 RANK() is a window function that ranks employees based on their salary within each

department (PARTITION BY department_id).

 The result is filtered by rank = 1, which returns the highest-paid employee in each

department.

Sample Data:

employee_id employee_name salary department_id

1 Alice 80000 1

2 Bob 95000 1

3 Charlie 70000 2

4 David 75000 2

5 Eve 60000 3

Result:

department_id employee_name salary

1 Bob 95000

2 David 75000

3 Eve 60000

31

2. Find the Total Sales for Each Product and Identify Top-Selling Products

Problem:

You have two tables:

 Sales table with columns product_id, quantity_sold, and sale_date.

 Products table with columns product_id and product_name.

You need to find the total sales (quantity_sold) for each product and identify products

that sold more than 100 units.

SQL Query:

SELECT p.product_name, SUM(s.quantity_sold) AS total_sales

FROM Sales s

JOIN Products p ON s.product_id = p.product_id

GROUP BY p.product_name

HAVING SUM(s.quantity_sold) > 100;

Explanation:

 The query joins Sales and Products on product_id.

 The GROUP BY clause groups the sales data by product_name, and SUM() calculates the

total sales for each product.

 The HAVING clause filters products with total sales greater than 100 units.

Sample Data:

Sales table:

product_id quantity_sold sale_date

1 50 2024-11-01

2 120 2024-11-01

1 30 2024-11-02

3 60 2024-11-02

2 40 2024-11-03

Products table:

product_id product_name

1 Product A

2 Product B

3 Product C

Result:

product_name total_sales

Product B 160

32

3. Find Customers Who Have Not Placed Any Orders

Problem:

You have two tables:

 Customers table with columns customer_id and customer_name.

 Orders table with columns order_id, customer_id, and order_date.

You need to find customers who have never placed an order.

SQL Query:
SELECT customer_name

FROM Customers c

WHERE NOT EXISTS (

 SELECT 1

 FROM Orders o

 WHERE o.customer_id = c.customer_id

);

Explanation:

 The NOT EXISTS subquery checks for customers who do not have matching records in the

Orders table.

 If no orders exist for a customer, the customer_name is returned.

Sample Data:

Customers table:

customer_id customer_name

1 Alice

2 Bob

3 Charlie

Orders table:

order_id customer_id order_date

1 1 2024-11-01

2 2 2024-11-03

Result:

customer_name

Charlie

33

4. Find the Department with the Highest Average Salary

Problem:

You have a table Employees with columns employee_id, employee_name, salary, and

department_id. You need to find the department with the highest average salary.

SQL Query:

sql

Copy code

SELECT department_id, AVG(salary) AS avg_salary

FROM Employees

GROUP BY department_id

HAVING AVG(salary) = (

 SELECT MAX(avg_salary)

 FROM (

 SELECT AVG(salary) AS avg_salary

 FROM Employees

 GROUP BY department_id

) AS avg_salaries

);

Explanation:

 The inner query calculates the average salary for each department.

 The outer query finds the department(s) with the maximum average salary by comparing

the AVG(salary) with the maximum of all department averages.

Sample Data:

employee_id employee_name salary department_id

1 Alice 80000 1

2 Bob 95000 1

3 Charlie 70000 2

4 David 75000 2

5 Eve 60000 3

Result:

department_id avg_salary

1 87500

34

5. Find the Second Highest Salary

Problem:

You need to find the second-highest salary from the Employees table.

SQL Query:

SELECT MAX(salary) AS second_highest_salary

FROM Employees

WHERE salary < (SELECT MAX(salary) FROM Employees);

Explanation:

 The inner query finds the highest salary.

 The outer query finds the maximum salary that is less than the highest salary, which is

the second-highest.

Sample Data:

employee_id employee_name salary

1 Alice 80000

2 Bob 95000

3 Charlie 70000

4 David 75000

5 Eve 60000

Result:

second_highest_salary

80000

6. Find Products That Have Never Been Sold

Problem:

You have two tables:

 Products table with columns product_id and product_name.

 Sales table with columns product_id, quantity_sold, and sale_date.

You need to find products that have never been sold.

35

SQL Query:

SELECT product_name

FROM Products p

WHERE NOT EXISTS (

 SELECT 1

 FROM Sales s

 WHERE s.product_id = p.product_id

);

Explanation:

 The NOT EXISTS subquery checks if a product exists in the Sales table.

 If no sales exist for a product, the product is returned.

Sample Data:

Products table:

product_id product_name

1 Product A

2 Product B

3 Product C

Sales table:

product_id quantity_sold sale_date

1 50 2024-11-01

2 30 2024-11-02

Result:

product_name

Product C

These complex SQL queries demonstrate how to perform advanced operations like subqueries,

joins, window functions, and aggregation. Each query tackles different challenges and real-world

scenarios.

36

Views in DBMS:
In Database Management Systems (DBMS), a view is a virtual table that is derived from one or

more base tables or other views. A view doesn't store the data itself; rather, it stores a query that,

when executed, retrieves the data dynamically from the underlying tables. Views are often used

to simplify complex queries, enhance security by restricting access to specific columns or rows,

and provide a way to present data in a customized manner.

Key Features of Views:
1. Virtual Table:

A view behaves like a table, but it doesn't store data physically. The data in a view is

dynamically retrieved from the base tables whenever the view is queried.

2. Simplicity:

Views can simplify complex queries by encapsulating them into a single object. Users

can query the view as if it were a regular table.

3. Security:
Views can restrict access to sensitive data. By creating views that exclude certain

columns or rows, you can control the information that different users can access.

4. Data Abstraction:

Views provide an abstraction layer between users and the database schema, allowing you

to change the underlying structure (e.g., table names or joins) without affecting user

queries.

5. Updatable Views:

Some views are updatable, meaning you can perform INSERT, UPDATE, or DELETE

operations on the base tables through the view. However, the view must meet certain

criteria to be updatable (e.g., it must be a simple view with no aggregate functions or

joins).

Types of Views:
1. Simple Views:

A simple view is based on a single table and doesn't contain complex calculations,

aggregate functions, or joins. It is usually updatable.

Example:

CREATE VIEW EmployeeNames AS

SELECT employee_name, department_id

FROM Employees;

In this example, the view EmployeeNames selects the employee_name and

department_id from the Employees table.

2. Complex Views:

A complex view is based on multiple tables and may include joins, aggregate functions,

or subqueries. These views are often used to provide summarized or combined data from

various tables.

Example:

CREATE VIEW DepartmentSalarySummary AS

SELECT department_id, AVG(salary) AS avg_salary

FROM Employees

GROUP BY department_id;

37

This view DepartmentSalarySummary calculates the average salary for each department,

combining data from the Employees table.

3. Materialized Views (in some DBMS):

Unlike regular views, materialized views store the actual data. They are used to improve

performance for complex queries by precomputing the result set and storing it.

Materialized views can be refreshed periodically to reflect changes in the underlying

tables.

Creating a View:
The basic syntax for creating a view is:

CREATE VIEW view_name AS

SELECT columns

FROM tables

WHERE conditions;

Example:

CREATE VIEW HighSalaryEmployees AS

SELECT employee_name, salary

FROM Employees

WHERE salary > 80000;

This view HighSalaryEmployees will contain a list of employees who earn more than 80,000.

Viewing the Definition of a View:
You can check the definition of a view using a SHOW or DESCRIBE statement, depending on the

DBMS.

SHOW CREATE VIEW HighSalaryEmployees;

Querying a View:
Once a view is created, you can query it just like a regular table:

SELECT * FROM HighSalaryEmployees;

This will retrieve all the rows from the HighSalaryEmployees view.

Updating Data Through Views:
Some views allow you to perform INSERT, UPDATE, or DELETE operations on the underlying

tables. However, only views that meet certain conditions are updatable:

 The view must reference only one table.

 The view must not include aggregate functions (e.g., COUNT(), SUM()).

 The view must not include DISTINCT, GROUP BY, or HAVING clauses.

Example of an Updatable View:
CREATE VIEW EmployeeDetails AS

SELECT employee_id, employee_name, salary

FROM Employees;

Now, you can perform UPDATE operations on this view, and it will modify the data in the base

Employees table.
UPDATE EmployeeDetails

SET salary = 95000

WHERE employee_id = 2;

38

Dropping a View:
If you no longer need a view, you can delete it using the DROP VIEW statement:

DROP VIEW HighSalaryEmployees;

Benefits of Using Views:
1. Simplify Complex Queries:

Views can simplify repetitive complex queries, making them easier to reuse.

2. Encapsulate Business Logic:
Views can encapsulate business rules, filters, and logic that apply to the data. This helps

ensure consistency across different users and applications.

3. Security Control:

Views allow you to control access to sensitive data by exposing only specific columns or

rows to different users.

4. Data Integrity:
By using views to aggregate or summarize data, you can ensure that data integrity is

maintained across different applications.

Limitations of Views:
1. Performance:

Since views are virtual and do not store data, querying complex views can sometimes

lead to performance issues, especially if they involve joins or aggregations.

2. Updatability:
Not all views are updatable, especially those involving complex queries with joins,

aggregations, or multiple tables.

3. Materialized Views:

While materialized views store data and provide better performance, they require

additional storage space and need to be periodically refreshed to ensure they reflect

changes in the underlying tables.

Examples of View Usage:
Example 1: View for Employee Salaries by Department
CREATE VIEW DepartmentSalary AS

SELECT department_id, AVG(salary) AS avg_salary

FROM Employees

GROUP BY department_id;

This view calculates the average salary for each department.

Example 2: View for Sales Performance
CREATE VIEW SalesPerformance AS

SELECT salesperson_id, SUM(sales_amount) AS total_sales

FROM Sales

GROUP BY salesperson_id;

This view summarizes the total sales for each salesperson.

Conclusion:
Views in DBMS provide an efficient way to simplify complex queries, abstract data, and

enhance security. They can be used for reporting, summarization, or controlling access to

sensitive data. However, it's essential to understand the underlying limitations, especially

concerning performance and updatability.

39

Constraints on Relational Database Model
In modeling the design of the relational database we can put some restrictions like what values

are allowed to be inserted in the relation, and what kind of modifications and deletions are

allowed in the relation. These are the restrictions we impose on the relational database.

In models like Entity-Relationship models, we did not have such features. Database Constraints

can be categorized into 3 main categories:

1. Constraints that are applied in the data model are called Implicit Constraints.

2. Constraints that are directly applied in the schemas of the data model, by specifying them in

the DDL(Data Definition Language). These are called Schema-Based Constraints or

Explicit Constraints.

3. Constraints that cannot be directly applied in the schemas of the data model. We call these

Application-based or Semantic Constraints.

So here we are going to deal with Implicit constraints.

Relational Constraints
These are the restrictions or sets of rules imposed on the database contents. It validates the quality

of the database. It validates the various operations like data insertion, updation, and other

processes that have to be performed without affecting the integrity of the data. It protects us

against threats/damages to the database. Mainly Constraints on the relational database are of 4

types

 Domain constraints

 Key constraints or Uniqueness Constraints

 Entity Integrity constraints

 Referential integrity constraints

Let’s discuss each of the above constraints in detail.

1. Domain Constraints

 Every domain must contain atomic values(smallest indivisible units) which means

composite and multi-valued attributes are not allowed.

 We perform a datatype check here, which means when we assign a data type to a column

we limit the values that it can contain. Eg. If we assign the datatype of attribute age as int,

we can’t give it values other than int datatype.

https://www.geeksforgeeks.org/sql-ddl-dql-dml-dcl-tcl-commands/

40

Example:

EID Name Phone

01 Bikash Dutta
123456789

234456678

Explanation: In the above relation, Name is a composite attribute and Phone is a multi-values

attribute, so it is violating domain constraint.

2. Key Constraints or Uniqueness Constraints

 These are called uniqueness constraints since it ensures that every tuple in the relation

should be unique.

 A relation can have multiple keys or candidate keys(minimal superkey), out of which we

choose one of the keys as the primary key, we don’t have any restriction on choosing the

primary key out of candidate keys, but it is suggested to go with the candidate key with less

number of attributes.

 Null values are not allowed in the primary key, hence Not Null constraint is also part of the

key constraint.

Example:

EID Name Phone

01 Bikash 6000000009

02 Paul 9000090009

01 Tuhin 9234567892

Explanation: In the above table, EID is the primary key, and the first and the last tuple have the

same value in EID ie 01, so it is violating the key constraint.

3. Entity Integrity Constraints

 Entity Integrity constraints say that no primary key can take a NULL value, since using

the primary key we identify each tuple uniquely in a relation.

Example:

EID Name Phone

01 Bikash 9000900099

02 Paul 600000009

NULL Sony 9234567892

https://www.geeksforgeeks.org/types-of-keys-in-relational-model-candidate-super-primary-alternate-and-foreign/
https://www.geeksforgeeks.org/difference-between-primary-key-and-unique-key/

41

Explanation: In the above relation, EID is made the primary key, and the primary key can’t take

NULL values but in the third tuple, the primary key is null, so it is violating Entity Integrity

constraints.

4. Referential Integrity Constraints

 The Referential integrity constraint is specified between two relations or tables and used to

maintain the consistency among the tuples in two relations.

 This constraint is enforced through a foreign key, when an attribute in the foreign key of

relation R1 has the same domain(s) as the primary key of relation R2, then the foreign key

of R1 is said to reference or refer to the primary key of relation R2.

 The values of the foreign key in a tuple of relation R1 can either take the values of the

primary key for some tuple in relation R2, or can take NULL values, but can’t be empty.

Example:

EID Name DNO

01 Divine 12

02 Dino 22

04 Vivian 14

DNO Place

12 Jaipur

13 Mumbai

14 Delhi

Explanation: In the above tables, the DNO of Table 1 is the foreign key, and DNO in Table 2

is the primary key. DNO = 22 in the foreign key of Table 1 is not allowed because DNO = 22 is

not defined in the primary key of table 2. Therefore, Referential integrity constraints are violated

here.

Advantages of Relational Database Model

 It is simpler than the hierarchical model and network model.

 It is easy and simple to understand.

 Its structure can be changed anytime upon requirement.

 Data Integrity: The relational database model enforces data integrity through various

constraints such as primary keys, foreign keys, and unique constraints. This ensures that the

data in the database is accurate, consistent, and valid.

 Flexibility: The relational database model is highly flexible and can handle a wide range of

data types and structures. It also allows for easy modification and updating of the data

without affecting other parts of the database.

https://www.geeksforgeeks.org/hierarchical-model-in-dbms/
https://www.geeksforgeeks.org/network-model-in-dbms/

42

 Scalability: The relational database model can scale to handle large amounts of data by

adding more tables, indexes, or partitions to the database. This allows for better

performance and faster query response times.

 Security: The relational database model provides robust security features to protect the

data in the database. These include user authentication, authorization, and encryption of

sensitive data.

 Data consistency: The relational database model ensures that the data in the database is

consistent across all tables. This means that if a change is made to one table, the

corresponding changes will be made to all related tables.

 Query Optimization: The relational database model provides a query optimizer that can

analyze and optimize SQL queries to improve their performance. This allows for faster

query response times and better scalability.

Disadvantages of the Relational Model

 Few database relations have certain limits which can’t be expanded further.

 It can be complex and it becomes hard to use.

 Complexity: The relational model can be complex and difficult to understand, particularly

for users who are not familiar with SQL and database design principles. This can make it

challenging to set up and maintain a relational database.

 Performance: The relational model can suffer from performance issues when dealing with

large data sets or complex queries. In particular, joins between tables can be slow, and

indexing strategies can be difficult to optimize.

 Scalability: While the relational model is generally scalable, it can become difficult to

manage as the database grows in size. Adding new tables or indexes can be time-

consuming, and managing relationships between tables can become complex.

 Cost: Relational databases can be expensive to license and maintain, particularly for large-

scale deployments. Additionally, relational databases often require dedicated hardware and

specialized software to run, which can add to the cost.

 Limited flexibility: The relational model is designed to work with tables that have

predefined structures and relationships. This can make it difficult to work with data that

does not fit neatly into a table-based format, such as unstructured or semi-structured data.

 Data redundancy: In some cases, the relational model can lead to data redundancy, where

the same data is stored in multiple tables. This can lead to inefficiencies and can make it

difficult to ensure data consistency across the database.

Conclusion

Relational database constraints are rules in a database model that help maintain the integrity and

consistency of data. These rules include primary key constraints, unique constraints, foreign key

constraints, check constraints, default constraints, not null constraints, multi-column constraints,

etc. Relational database constraints help keep data accurate, maintain relationships, and avoid

the insertion of wrong or inconsistent data.

https://www.geeksforgeeks.org/foreign-key-constraint-in-sql/
https://www.geeksforgeeks.org/foreign-key-constraint-in-sql/

43

More Examples

Integrity Constraints

o Integrity constraints are a set of rules. It is used to maintain the quality of information.

o Integrity constraints ensure that the data insertion, updating, and other processes have to

be performed in such a way that data integrity is not affected.

o Thus, integrity constraint is used to guard against accidental damage to the database.

Types of Integrity Constraint

1. Domain constraints

o Domain constraints can be defined as the definition of a valid set of values for an attribute.

o The data type of domain includes string, character, integer, time, date, currency, etc. The

value of the attribute must be available in the corresponding domain.

Example:

44

2. Entity integrity constraints

o The entity integrity constraint states that primary key value can't be null.

o This is because the primary key value is used to identify individual rows in relation and if

the primary key has a null value, then we can't identify those rows.

o A table can contain a null value other than the primary key field.

Example:

3. Referential Integrity Constraints

o A referential integrity constraint is specified between two tables.

o In the Referential integrity constraints, if a foreign key in Table 1 refers to the Primary Key

of Table 2, then every value of the Foreign Key in Table 1 must be null or be available in

Table 2.

Example:

45

4. Key constraints

o Keys are the entity set that is used to identify an entity within its entity set uniquely.

o An entity set can have multiple keys, but out of which one key will be the primary key. A

primary key can contain a unique and null value in the relational table.

Example:

46

SQL Constraints
SQL constraints are used to specify rules for the data in a table.

Constraints are used to limit the type of data that can go into a table. This ensures the accuracy

and reliability of the data in the table. If there is any violation between the constraint and the data

action, the action is aborted.

Constraints can be column level or table level. Column level constraints apply to a column, and

table level constraints apply to the whole table.

The following constraints are commonly used in SQL:

 NOT NULL - Ensures that a column cannot have a NULL value

 UNIQUE - Ensures that all values in a column are different

 PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely identifies

each row in a table

 FOREIGN KEY - Prevents actions that would destroy links between tables

 CHECK - Ensures that the values in a column satisfies a specific condition

 DEFAULT - Sets a default value for a column if no value is specified

 CREATE INDEX - Used to create and retrieve data from the database very quickly

https://www.w3schools.com/sql/sql_notnull.asp
https://www.w3schools.com/sql/sql_unique.asp
https://www.w3schools.com/sql/sql_primarykey.asp
https://www.w3schools.com/sql/sql_foreignkey.asp
https://www.w3schools.com/sql/sql_check.asp
https://www.w3schools.com/sql/sql_default.asp
https://www.w3schools.com/sql/sql_create_index.asp

	Rule 1: Information rule
	Rule 2: Guaranteed Access rule
	Rule 3: Systematic Treatment of NULL values
	Rule 4: Active online catalog
	Rule 5: Comprehensive data sub-language rule
	Rule 6: View updating rule
	Rule 7: High-level insert, update and delete rule
	Rule 8: Physical data independence
	Rule 9: Logical data independence
	Rule 10: Integrity independence
	Rule 11: Distribution independence
	Rule 12: Non-subversion rule
	Concepts
	Constraints
	Key Constraints:
	Domain constraints
	Referential integrity constraints

	Relational algebra
	Select Operation (σ)
	Project Operation (∏)
	Union Operation (∪)
	Set Difference (−)
	Cartesian Product (Χ)
	Rename operation (ρ)
	Relational Calculus
	Tuple relational calculus (TRC)
	Domain relational calculus (DRC)
	Mapping Entity
	Mapping relationship
	Mapping Weak Entity Sets
	Mapping hierarchical entities
	SQL Overview
	Data definition Language
	CREATE
	DROP
	ALTER

	Data Manipulation Language
	SELECT/FROM/WHERE
	INSERT INTO/VALUES
	UPDATE/SET/WHERE
	DELETE/FROM/WHERE

	DBMS Normalization
	Functional Dependency
	Armstrong's Axioms
	Trivial Functional Dependency
	Normalization
	First Normal Form:
	Second Normal Form:
	Third Normal Form:
	Boyce-Codd Normal Form:

	DBMS Joins
	Theta (θ) join
	Equi-Join
	Natural Join (⋈)
	Outer Joins
	Left outer join (R S)
	Right outer join: (R S)
	Full outer join: (R S)
	Complex SQL Queries
	1. Employees Table
	2. Department Table
	3. Employees Backup Table
	4. Employee Salary Range Query Result (using CASE)
	5. Employees Table after NULL Handling (using COALESCE)
	6. Stored Procedure Query Result (Get Employees by Department)
	7. Employees Table with a Subquery (using EXISTS)
	8. Employees Table (with Salary Comparison using ANY or ALL)
	1. SQL GROUP BY Statement
	2. SQL HAVING Clause
	3. SQL EXISTS Operator
	4. SQL ANY and ALL Operators
	5. SQL SELECT INTO Statement
	6. SQL INSERT INTO SELECT Statement
	7. SQL CASE Expression
	8. SQL NULL Functions
	9. SQL Stored Procedures for SQL Server
	10. SQL Comments
	11. SQL Operators
	1. Find the Employees with Highest Salary in Each Department
	2. Find the Total Sales for Each Product and Identify Top-Selling Products
	3. Find Customers Who Have Not Placed Any Orders
	4. Find the Department with the Highest Average Salary
	5. Find the Second Highest Salary
	6. Find Products That Have Never Been Sold
	Key Features of Views:
	Types of Views:
	Creating a View:
	Viewing the Definition of a View:
	Querying a View:
	Updating Data Through Views:
	Dropping a View:
	Benefits of Using Views:
	Limitations of Views:
	Examples of View Usage:
	Example 1: View for Employee Salaries by Department
	Example 2: View for Sales Performance

	Conclusion:
	Constraints on Relational Database Model

	Relational Constraints
	1. Domain Constraints
	2. Key Constraints or Uniqueness Constraints
	3. Entity Integrity Constraints
	4. Referential Integrity Constraints

	Advantages of Relational Database Model
	Disadvantages of the Relational Model
	Conclusion

	Integrity Constraints
	Types of Integrity Constraint
	1. Domain constraints
	2. Entity integrity constraints
	3. Referential Integrity Constraints
	4. Key constraints

	SQL Constraints

