
SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Re-accredited by NAAC with A+ grade, Accredited by NBA(CSE, IT, ECE, EEE & Mechanical)
Approvedy by AICTE, New Delhi, Recognized by UGC, Affiliated to Anna University, Chennai

Department of MCA
DBMS Dependency in DBMS

Course Name : 23CAT603 - DATA BASE MANAGEMENT SYSTEM 

Class : I Year / I Semester 

Unit III – Dependency in DBMS



Dependency in DBMS

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 2 of 30

What are Dependencies in DBMS?
• A dependency is a constraint that governs or defines the relationship between two or

more attributes.
• In a database, it happens when information recorded in the same table uniquely

determines other information stored in the same table.
• This may also be described as a relationship in which knowing the value of one attribute

(or collection of attributes) in the same table tells you the value of another attribute (or set
of attributes).

• It's critical to understand database dependencies since they serve as the foundation for
database normalization.



Types of Dependencies in DBMS

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 3 of 30

In DBMS, it has the following types:
• Functional Dependency
• Fully-Functional Dependency
• Transitive Dependency
• Multivalued Dependency
• Partial Dependency

Now, let's get started with Functional Dependency.



Functional Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 4 of 30

Functional Dependencies:
A functional dependency (FD) is a relationship that exists between two attributes in a
database, typically the primary key and additional non-key attributes. Consider it a link
between two qualities of the same relation.

A dependency is denoted by an arrow "→".

If C determines D functionally, then C→D.

Functional dependency, indicated as C→ D, is a relationship between two sets of
attributes, C and D. In this case, C is referred to as the "determinant", and D is referred
to as the "dependent".

Functional Dependency aids in the maintenance of database data quality.



Functional Dependency Rules

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 5 of 30

Inference Rules
Axioms:
A relational database's functional dependencies can be inferred using Armstrong's
axioms, a set of inference principles. Armstrong, William W., created them.
Functional Dependencies Axioms:
The reflexive rule states that if D is a subset of C, then D is determined by C., i.e. C→D.
The augmentation rule, also known as the partial dependency rule, states that if D is
determined by C, then CZ determines DZ for any Z.Every non-key attribute is required to
be totally dependent on the Primary Key, according to it.
i.e. If C→D, then CZ→DZ for any Z.
Transitivity rule states that if D is determined by C and Z is determined by D, then C
must also determine Z., i.e. if C→D and D→Z, then C→Z.
Decomposition:
It is a rule that stipulates that if a table appears to contain two entities determined by
the same primary key, it should be split into two independent tables.



Functional Dependency Rules

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 6 of 30

According to this rule, if C determines D and Z, C also determines D and Z individually.i.e.
if C→DZ then C→D and C→Z.
Union
It suggests that if two tables are independent yet have the same Primary Key, they
should be combined.It states that C must determine D and Z if C determines D and C
determines Z.
i.e. if C→D and C→Z then C→DZ.



Functional Dependency TERMS

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 7 of 30

Terms:
Dependent: It is shown on the functional dependency diagram's right side.
Determinant: It is shown on the functional dependency Diagram's left side.

Non-normalized table: A table containing redundant data.
Examples
Example 1: Here, we have a table named Student.
<Student>

StuID StuName StuAge

E01 Rose 14

E02 Rolly 13

Here, StuName in the preceding table is functionally dependent on StuID since StuName can only accept one value
for the specified value of StuID, i.e. Because a student's name can be uniquely determined from an ID, StuName can
be considered to be dependent on StuID.
1.StuID→StuName
However, the converse assertion (StuName?>StuID) is false because multiple students can have the same name but
have different StuID's.



Functional Dependency TERMS

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 8 of 30

Example 2: We have a table Employee.
<Employee>

Employee_No E_Name E_Salary Address

1 Dolly 60000 Seoul

2 Flora 48000 BukchonHanok

3 Anni 35000 Seoul

We can Deduce Several Valid Functional Dependencies from the Preceding Table:
In this case, knowing the value of Employee_No allows us to access E_Name, Address, E_Salary, and so on. As a
result, the Address, E Name, and E Salary are all functionally dependent on Employee No.
• Employee_No→ {E_Name, E_Salary, Address}: Employee _No can decide the values of fields E_Name, E_Salary,
and Address in this case, resulting in a legal Functional dependence.
• Employee_No→E_Salary, Because Employee_No can determine the entire set of {E_Name, E_Salary, and Address},
it can also determine its subset E_Salary.
•More valid functional dependents include: Employee_No→name, {Employee_No, E_Name }→(E_Salary, Address},
and so on.



Functional Dependency TERMS

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 9 of 30

Here are Some Invalid Functional Dependencies:
E_Name→E_Salary: This is not an acceptable functional dependency because employees with the same name can 
have different salaries.
Address→E_Salary: Different salaries can be given to the employees of the same Address; for example, E_Salary 
60000 and 35000 in the preceding table belong to employees of the same address, "Seoul"; hence 
Address→E_Salary is an incorrect functional dependency.
More invalid functional dependencies include: E_Name→Employee_No, {E_Name, E_Salary}→Employee_No, 
and so on.



Types of Functional Dependencies

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 10 of 30

Types of Functional Dependencies



1. Trivial Functional Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 11 of 30

1. Trivial Functional Dependency:
A "dependent" in Trivial functional dependency is always a subset of the "determinant".
A functional dependency is said to be trivial if the attributes on its right side are a subset of the attributes on its 
left side.
If D is a subset of C, C→D is referred to as a Trivial Functional Dependency.
Example: Take a look at the Student table below.
<Student>

Roll_No S_Name S_Age

1 John 13

2 Riya 12

3 Giya 15

4 Jolly 16

• {Roll_No, S_ Name} →S_Name is a Trivial functional dependency in this case because the
dependant S_Name is a subset of the determinant {Roll_No, S_Name}.
• { Roll_No } → { Roll_No }, { S_Name } → { S_Name } and
• { S_Age } → { S_Age } are also Trivial.



2. Non-Trivial Functional Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 12 of 30

It is the inverse of Trivial functional dependence. Formally, a Dependent is a Non-Trivial functional dependency if
it is not a subset of the determinant.
If D is not a subset of C, C→D is said to have a non-trivial functional dependency. Non-trivial functional
dependency is defined as a functional dependency C→ D where C is a set of attributes and D is also a set of
attributes but not a subset of C.
Example: Consider the Student table below.
<Student>

Roll_No→S_Name is a non-trivial functional dependency in this case since S_Name(dependent) is not a
subset of Roll_No (determinant).
Similarly, {Roll_No, Name}→ Age are non-trivial functional dependencies.

Roll_No S_Name S_Age

1 John 13

2 Riya 12

3 Giya 15

4 Jolly 16



3. Multivalued Functional Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 13 of 30

In multivalued functional dependency, attributes in the dependent set are not dependent on one 
another.
For example, C {D, Z}is referred to as a Multivalued functional dependency if there is no functional 
dependency between D and Z.
Example: Take a look at the Student table below.
<Student>

{Roll_No}→ {S_Name, S_Age) is a Multivalued functional dependency in this case because the 
"dependent values" S_ Name and S_Age are not functionally dependent (i.e. S_Name→S_Age or 
S_ Age→S_ Name does not exist).

Roll_No S_Name S_Age

1 John 13

2 Riya 12

3 Giya 15

4 Jolly 16



4. Transitive Functional Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 14 of 30

Consider two functional dependencies, C→ D and D→Z; C→Z must exist according to the transitivity 
principle. This is referred to as a Transitive Functional dependency.
In transitive functional dependency, the dependent is dependent on the determinant indirectly.
Example: Consider the Student table below.
<Student>

Roll_No→S_Department and S_Department→Street_No are correct here. As a result, 
Roll_No→Street_No is a valid functional dependency, according to the principle of transitivity.

Roll_No S_Name S_Department Street_No

1 John AC 12

2 Riya BH 11

3 Giya MV 14

4 Jolly CD 18



Benefits of Functional Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 15 of 30

• Functional Dependency prevents data duplication. As a result, the same data does not appear
several times in that database.

• It assists you in maintaining the database's data quality.
• It assists you in defining database semantics and constraints.
• It aids you in spotting flawed designs.
• It aids you in locating database design information.
• The Normalization method begins with identifying the potential keys in the relation. It is

impossible to locate candidate keys and normalize the database without functional
dependencies.



Fully Functional Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 16 of 30

A functional dependency C→D,a fully functional dependency is one in which, if any attribute x from 
C is removed, the "dependency" no longer exists.
If D is "fullyfunctional dependent" on C, it is not functionally dependent on any of the valid subsets 
of C.
i.e.Attribute Z in the relation CDE->Z is "fully functionally dependent"on CDE and not on any 
appropriate subset of CDE. That is, CDE subsets such as CD, DE, C, D, and so on cannot determine Z.
Also;

• Full Functional Dependency corresponds to the Second Normal Form normalization 

standard.

• Functional dependency improves the data quality of our database.

• In this dependency, the non-prime property is functionally reliant on the candidate key.

• The full dependency on database attributes helps to assure data integrity and eliminate 

data abnormalities.



Fully Functional Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 17 of 30

Example: Here, we have a table named Supply.
<Supply> Seller_Id Product_id T_price

1 1 530

2 1 535

1 2 100

2 2 101

3 1 342

According to the Table, neither Seller_id nor Product_id can uniquely determine the price, but
both Seller_id and Product_id combined can.
As a result, we can say that T_price is "fully functionally dependent" on Seller_id nor Product_id.
This outlines and demonstrates our fully functional dependency:
1.{ Seller_id , Product_id } →T_Price



Partial Functional Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 18 of 30

A functional dependency C → D, If the dependency doeshold after removing any attribute x from C,
then it is said to be a Partial Functional Dependency.
A functional dependency C→D, If D is functionally dependent on C and may be determined by any
appropriate subset of C, there is a partial dependency.
i.e. We have an CF->D, C->E, and E->D relation. Now, let us compute the closure of {C+}=CED. In this
case, C can determine D on its own, implying that D is partially dependent on CF.
Also;
In partial functional dependency, the non-prime attribute is functionally dependent on a
component of a candidate key.
The normalizing standard of the Second Normal Form does not apply to Partial Functional
Dependency. 2NF, on the other hand, eliminates Partial Dependency.
Partially dependent data does not improve data quality. It must be removed before normalization in
the second normal form may occur.



Partial Functional Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 19 of 30

Cause of Partial Dependency:
Partial dependency happens when a non-prime attribute is functionally dependent on a portion of
the given candidate key, as we saw in the preceding section.
In other words, partial dependency arises when an attribute in a table is dependent on only a
portion of the primary key rather than the entire key.
Example: We have a table called Student here.
<Student>

Roll_No S_Name S_Course

1 John DBMS

2 Riya C++

3 Giya Java

4 Jolly C

We can see that the attributes S_Name and Roll_No can both uniquely identify a S_Course. As a result, 
we might argue that the relationship is partly dependent.



Transitive Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 20 of 30

A transitive dependence is any non-prime attribute other than the candidate key that is reliant on 
another non-prime attribute that is wholly dependent on the candidate key.
Transitive Dependency occurs when an indirect interaction results in functional dependency. As a 
result, if C→ D and D ->Z are true, then C ->Z is a transitive dependency.
Transitive dependency causes deletion, update, and insertion errors in the database and is regarded 
as poor database design.
To reach 3NF, one must first eliminate Transitive Dependency.
Only when two Functional Dependencies establish an indirect functional dependency can it be 
transitive. As an example,
When the following functional dependencies hold true, C →E is a transitive dependency:
C ->D
D does not imply C
C→E
Only in the case of some given relation of three or more attributes can transitive dependency occur 
effortlessly. Such a dependency aids us in normalizing the database in its 3rd Normal Form (3NF).



Transitive Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 21 of 30

Example: Here, we have a table Telecast_show.
<Telecast_show>

(Because of a transitive functional relationship, the table above is not in its 3NF.)
Id_show→Id_telecast
Id_telecast→Type_telecast
As a result, the following functional dependency is transitive.
1.Id_show→Type_telecast

d_show Id_telecast Type_telecast Cost_CD

F01 S01 Romantic 30

F02 S02 Thriller 50

F03 S03 Comedy 20



Transitive Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 22 of 30

Avoiding Transitive Functional Dependency
According to the preceding statement, the relation <Telecast> violates the 3NF (3rd Normal Form).
To address this violation, we must split the tables in order to remove the transitive functional
relationship.
<show>

<telecast>

Id_show Id_telecast Cost_CD

F01 S01 30

F02 S02 50

F03 S03 20

Id_telecast Type_telecast

S09 Thriller

S05 Romantic

S09 Comedy

The preceding relationship is now in the Third 
Normal Form (3NF) of Normalization.



Multivalued Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 23 of 30

The term Multivalued Dependency refers to having several rows in a particular table. As a result, it
implies that there are multiple other rows in the same table. A multivalued dependency would thus
preclude the 4NF. Any multivalued dependency would involve at least three table attributes.
When two separate attributes in a given table are independent of each other, multivalued dependency
occurs. However, both of these are dependent on a third factor. At least two of the attributes are reliant
on the third attribute in the multivalued dependence. This is why it always includes at least three of the
qualities.
Example: Here we have a table Car.
<Car>

Model_car Month_manu Col_or

S2001 Jan Yellow

S2002 Feb Red

S2003 March Yellow

S2004 April Red

S2005 May Yellow

S2006 June Red

In this scenario, the columns Col_or and
Month_manu are both dependent on Model-car but
independently of one another. As a result, we can
refer to both of these columns as multivalued. Thus,
they are dependent on Model_car. Here is a diagram
of the dependencies we covered earlier:
1.Model_car → →Month_manu
2.Model_car → → Col_or



Why Do We Use Multivalued Dependency in DBMS?

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 24 of 30

When we face these two different ways, we always employ multivalued conditions:
When we wish to test the relationships or determine whether they are legal under certain
arrangements of practical and multivalued dependencies.
When we want to know what restrictions exist on the arrangement of legal relationships; as a
result, we will only be concerned with the relationships that fulfil a specific arrangement of practical
and multivalued dependencies.
Occurrence:
•When two qualities in a table are independent of each other yet reliant on a third property, this is
referred to as multivalued dependence.
•Because multivalued Dependency requires a minimum of two variables that are independent of
each other in order to be dependent on the third variable, the minimum number of variables
necessary is two.



DBMS Dependency Conditions for Multivalued Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 25 of 30

If all of the following conditions are met, we can state that multivalued dependency exists.
If any attribute 'C' has many dependencies on 'D,' for any relation R, for all the pair data values in
table row R1 and table row R2, such that the relation
R1[C]=R2[C]
exists, and there is a relationship between row R3 and row R4 in the table such that
R1[C] = R2[C] = R3[C] = R4[C]
R1[D] = R3[D], R2[D] = R4[D]
Then we can assert the existence of Multivalued Dependency (MVD).
That is, in Rows R1, R2, R3, and R4,
R1[C], R2[C], R3[C], and R4[C] must all have the same value.
The value of R1[D] should be equal to R3[D], and the value of R2[D] should be equal to R4[D].



DBMS Dependency Conditions for Multivalued Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 26 of 30

Example: Here, we have a table Course.
<Course>

Row_ Name_ Course_work_ Hobby_

R1 Ronit Java Dancing

R2 Ronit Python Singing

R3 Ronit Java Dancing

R4 Ronit Python Singing



DBMS Dependency Conditions for Multivalued Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 27 of 30

Because we have distinct values of Course_work_ and Hobby_ for the same value of Name "Ronit," 
we have multivalued dependents on Name_.
Verificationof <Course> table.
Let us now examine the condition of MVD(Multivalued Dependency) in our table.
Condition 1:
R1[C] = R2[C] = R3[C] = R4[C]
From the table;
R1[C] = R2[C] = R3[C] = R4[C] = 'Ronit'.
As a result, condition 1 appears to be met.



DBMS Dependency Conditions for Multivalued Dependency

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 28 of 30

Condition 2:
R1[D] = R3[D], R2[D] = R4[D]
From the table;
R1[D] = R3[D] = 'Java', R2[D] = R4[D]= 'Python'.
As a result, condition 2 appears to be met as well.
Condition 3:
R1[e] = R3[e], R2[e] = R4[e]
We can draw a conclusion from the table.
R1[E] = R3[E] = 'Dancing', R2[E] = R4[E] = 'Singing'.
As a result, condition 3 is likewise satisfied, indicating that MVD occurs in the provided situation.
We have now;
C →→ D
And from the table, we obtained the following;
Name_ →→Course_work_
And for C →→ E, we have
Name_ → Hobby_
Finally, in the given table, we can conclude with the conditional relation as
Name_ →→Course_work_
Name_ →→ Hobby_



Normalization

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 29 of 30

What Normalization Stands for?
Normalization is a method of organizing data in a database that helps to reduce data redundancy,
insertion, update, and deletion errors. It is the process of assessing relation schemas based on
functional relationships and primary keys.
This allows you to limit the amount of space a database takes up while also ensuring that the data is
kept correctly.
Normalization Need
As previously stated, normalization is used to eliminate data redundancy. It offers a mechanism for
removing the following anomalies from the database and making it more consistent:
A database anomaly is a fault in the database caused by insufficient preparation and redundancy.
Insertion anomalies occur when we are unable to insert data into a database due to the absence of
particular attributes at the moment of insertion.
Updation anomalies occur when the same data items with the same values are repeated but are
not related to each other.
A deletion anomaly happens when deleting one part of the data results in the deletion of the other
necessary information from the database.



Normal Forms

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 30 of 30

As illustrated in the image below, there are four types of normal forms that are commonly used in relational
databases:



1NF, 2NF

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 31 of 30

First Normal Form (1NF):

A relation is in 1NF if all of its attributes are single-valued or if it lacks any multi-valued or composite attributes,
i.e., every attribute is an atomic attribute.

The 1NF is violated if there is a composite or multi-valued attribute. To resolve this, we can construct a new row
for each of the multi-valued attribute values in order to transform the table into the 1NF.

Second Normal Form (2NF):

Normalization of 1NF to 2NF relations entails the removal of incomplete dependencies.
When any non-prime attributes, i.e., qualities that are not part of the candidate key, are not totally functionally
reliant on one of the candidate keys, a partial dependency occurs.

To be in second normal form, a relational table must obey the following rules:
• The table must be presented in the first normal form.
• It must not have any partial dependencies, which means that all non-prime attributes must be totally 

functionally dependent on the primary key.



3NF

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 32 of 30

Third Normal Form (3NF):
Normalization of 2NF to 3NF relations entails the removal of transitive dependencies.
To be in the third normal form, a relational table must obey the following rules:

• The table should be in second normal form.
• There are no non-prime attributes that are transitively dependent on the 

primary key.
• At least one of the following conditions must be met for each functional 

dependency X -> Z:
• The table's super key is X.
• Z is a key feature of the table.



4NF

19 September 2024 Relational Algebra/23CAT603/DBMS/Yuvarani E/MCA/SNSCT • 33 of 30

Boyce-Codd Normal Form (BCNF):
Boyce-Codd Normal Form is a more advanced variant of 3NF since it has more 
limitations than 3NF.

To be in Boyce-Codd normal form, a relational table must fulfil the following rules:

• The table must be in the "Third Normal Form".
• For every non-trivial functional dependency X -> Y, X is the table's superkey. That 

is, if Y is a prime attribute, X cannot be a non-prime attribute.



References

1. https://www.javatpoint.com/dependency-in-dbms
2. https://www.geeksforgeeks.org/types-of-functional-dependencies-in-dbms/

https://www.javatpoint.com/dependency-in-dbms
https://www.geeksforgeeks.org/types-of-functional-dependencies-in-dbms/

