
1

Chapter 1. Introduction to Database Systems

Introduction

Basic Concepts and Definitions

Data Dictionary

Database

Database System

Data Administrator (DA)

Database Administrator (DBA)

File-Oriented System versus Database System

Historical Perspective of Database Systems

Database Language

Transaction Management

UNIT I

1.1. Introduction

In today’s competitive environment, data (or information) and its efficient management is the most critical business

objective of an organisation. It is also a fact that we are in the age of information explosion where people are

bombarded with data and it is a difficult task to get the right information at the right time to take the right decision.

Therefore, the success of an organisation is now, more than ever, dependent on its ability to acquire accurate,

reliable and timely data about its business or operation for effective decision-making process.

Database system is a tool that simplifies the above tasks of managing the data and extracting useful information in a

timely fashion. It analyses and guides the activities or business purposes of an organisation. It is the central

repository of the data in the organisation’s information system and is essential for supporting the organisation’s

functions, maintaining the data for these functions and helping users interpret the data in decision-making.

Managers are seeking to use knowledge derived from databases for competitive advantages, for example, to

determine customer buying pattern, tracking sales, support customer relationship management (CRM), on-line

shopping, employee relationship management, implement decision support system (DSS), managing inventories

and so on. To meet the changing organisational needs, database structures must be flexible to accept new data and

accommodate new relationships to support the new decisions.

With the rapid growth in computing technology and its application in all spheres of modern society, databases have

become an integral component of our everyday life. We encounter several activities in our day-to-day life that

http://my.safaribooksonline.com/9788177585674/ch01lev1sec1#ch01lev1sec1
http://my.safaribooksonline.com/9788177585674/ch01lev1sec2#ch01lev1sec2
http://my.safaribooksonline.com/9788177585674/ch01lev1sec3#ch01lev1sec3
http://my.safaribooksonline.com/9788177585674/ch01lev1sec4#ch01lev1sec4
http://my.safaribooksonline.com/9788177585674/ch01lev1sec5#ch01lev1sec5
http://my.safaribooksonline.com/9788177585674/ch01lev1sec6#ch01lev1sec6
http://my.safaribooksonline.com/9788177585674/ch01lev1sec7#ch01lev1sec7
http://my.safaribooksonline.com/9788177585674/ch01lev1sec8#ch01lev1sec8
http://my.safaribooksonline.com/9788177585674/ch01lev1sec9#ch01lev1sec9
http://my.safaribooksonline.com/9788177585674/ch01lev1sec10#ch01lev1sec10
http://my.safaribooksonline.com/9788177585674/ch01lev1sec11#ch01lev1sec11

2

involve interaction with a database, for example, bank database to withdraw and deposit money, air or railway

reservation databases for booking of tickets, library database for searching of a particular book, supermarket goods

databases to keep the inventory, to check for sufficient credit balance while purchasing goods using credit cards and

so on.

In fact, databases and database management systems (DBMS) have become essential for managing our business,

governments, banks, universities and every other kind of human endeavour. Thus, they are a critical element of

today’s software industry to support these requirements and a daunting task to solve the problems of managing

huge amounts of data that are increasingly being stored.

This chapter introduces the basic concepts of databases and database management system (DBMS), reviews the

goals of DBMS, types of data models and storage management system.

1.2. Basic Concepts and Definitions

With the growing use of computers, the organisations are fast migrating from a manual system to a computerised

information system for which the data within the organisation is a basic resource. Therefore, proper organisation

and management of data is necessary to run the organisation efficiently. The efficient use of data for planning,

production control, marketing, invoicing, payroll, accounting and other function in an organisation have a major

impact for its competitive edge. In this section, formal definition of the terms used in databases is provided.

1.2.1. Data

Data may be defined as a known fact that can be recorded and that have implicit meaning. Data are raw or isolated

facts from which the required information is produced.

Data are distinct pieces of information, usually formatted in a special way. They are binary computer

representations of stored logical entities. A single piece of data represents a single fact about something in which

we are interested. For an industrial organisation, it may be the fact that Thomas Mathew’s employee (or social

security) number is 106519, or that the largest supplier of the casting materials of the organisation is located in

Indore, or that the telephone number of one of the key customers M/s Elbee Inc. is 001-732-3931650. Similarly, for

a Research and Development set-up it may be the fact that the largest number of new products as on date is 100, or

for a training institute it may be the fact that largest enrolment were in Database Management course. Therefore, a

piece of data is a single fact about something that we care about in our surroundings.

Data can exist in a variety of forms that have meaning in the user’s environment such as numbers or text on a piece

of paper, bits or bytes stored in computer’s memory, or as facts stored in a person’s mind. Data can also be objects

such as documents, photographic images and even video segments. The example of data is shown in Table 1.1.

Table 1.1. Example of data

In Salesperson’s view In Electricity supplier’s context In Employer’s mind

Customer-name Consumer-name Employee-name

Customer-account Consumer-number Identification-number

Address Address Department

Telephone numbers Telephone numbers Date-of-birth

 Unit consumed Qualification

javascript:moveTo('ch01table01');

3

Table 1.1. Example of data

In Salesperson’s view In Electricity supplier’s context In Employer’s mind

 Amount-payable Skill-type

Usually there are many facts to describe something of interest to us. For example, let us consider the facts that as a

Manager of M/s Elbee Inc., we might be interested in our employee Thomas Mathew. We want to remember that

his employee number is 106519, his basic salary rate is Rs. 2,00,000 (US$ 4000) per month, his home town is

Jamshedpur, his home country is India, his date of birth is September 6th, 1957, his marriage anniversary is on May

29th, his telephone number is 0091-657-2431322 and so forth. We need to know these things in order to process

Mathew’s payroll check every month, to send him company greeting cards on his birthday or marriage anniversary,

print his salary slip, to notify his family in case of any emergency and so forth. It certainly seems reasonable to

collect all the facts (or data) about Mathew that we need for the stated purposes and to keep (store) all of them

together. Table 1.2 shows all these facts about Thomas Mathew that concern payroll and related applications.

Table 1.2. Thomas Mathew’s payroll facts

Employee
Number

Employee
Last Name

Employee
First Name

Basic
Salary
(US$)

Home
Town

Home
Country

Date of
Birth

Marriage
Anniversary

Telephone
Number

106519 Mathew Thomas 4000 Jamshedpur India 06-09-
1957

29.05 0091-657-
2431322

Data is also known as the plural of datum, which means a single piece of information. However, in practice, data is

used as both-the singular and the plural form of the word. The term data is often used to distinguish machine-

readable (binary) information from human-readable (textual) information. For example, some applications make a

distinction between data files (that contain binary data) and text files (that contain ASCII data). Either numbers, or

characters or both can represent data.

javascript:moveTo('ch01table02');

4

Fig. 1.1. Three-layer data structure

Operational data are stored in various operational systems throughout the organisation (both internal and

external) systems.

Reconciled data are stored in the organisation data warehouse and in operational data store. They are detailed and

current data, which is intended as the single, authoritative source for all decision support applications.

Derived data are stored in each of the data mart (a selected, limited and summarised data warehouse). Derived data

are selected, formatted and aggregated for end-user decision support applications.

1.2.2. Information

Data and information are closely related and are often used interchangeably. Information is processed, organised or

summarised data. It may be defined as collection of related data that when put together, communicate meaningful

and useful message to a recipient who uses it, to make decision or to interpret the data to get the meaning.

Data are processed to create information, which is meaningful to the recipient, as shown in Fig. 1.2. For example,

from the salesperson’s view, we might want to know the current balance of a customer M/s Waterhouse Ltd., or

perhaps we might ask for the average current balance of all the customers in Asia. The answers to such questions

are information. Thus, information involves the communication and reception of knowledge or intelligence.

Information apprises and notifies, surprises and stimulates. It reduces uncertainty, reveals additional alternatives or

helps in eliminating irrelevant or poor ones, influences individuals and stimulates them into action. It gives warning

signals before some thing starts going wrong. It predicts the future with reasonable level of accuracy and helps the

organisation to make the best decisions.

javascript:moveTo('ch01fig02');

5

Fig. 1.2. Information cycle

1.2.3. Data Versus Information

Let us take the following two examples with the given list of facts or data as shown in Fig. 1.3. Both the examples

given below 1.1, 1.2 and 1.3 satisfy the definition of data, but the data are useless in their present form as they are

unable to convey any meaningful message. Even if we guess in example 1.1 that it is person’s names together with

some identification or social security numbers, that in example 1.2 it is customer’s names together with some

money transaction and in example 1.3 it may be student’s name together with the marks obtained in some

examination the data remain useless since they do not convey any meaning about the purpose of the entries.

Fig. 1.3. Data versus Information

javascript:moveTo('ch01fig03');

6

Now let us modify the data in example 1.1 by adding a few additional data and providing some structure and place

the same data in a context shown in Fig. 1.4 (a). Now data has been rearranged or processed to provide meaningful

message or information, which is an Employee Master of M/s Metal Rolling Pvt. Ltd. Now this is useful

information for the departmental head or the organisational head for taking decisions related to the additional

requirement of experienced and qualified manpower.

Fig. 1.4. Converting data into information for Example 1.1

(a) Data converted into textual information

Another way to convert data intoformation is to summarise them or otherwise process and present them for human

interpretation. For example, Fig. 1.4 (b) shows summarised data related to the number of employees versus

experience and qualification presented as graphical information. This information could be used by the organisation

as a basis for deciding whether to add or hire new experienced or qualified manpower.

Data in Example 1.2 can be modified by adding additional data and providing some structure, as shown in Fig. 1.5.

Now data has been rearranged or processed to provide meaningful message or information, which is a Customer

Invoicing of M/s Metal Rolling Pvt. Ltd. Now this is useful information for the organisation to sending reminders to

the customer for the payment of pending balance amount and so on. Similarly, as shown in Fig. 1.6, the data has

been converted into textual and summarised information for Example 1.3.

javascript:moveTo('ch01fig04');
javascript:moveTo('ch01fig04');
javascript:moveTo('ch01fig05');
javascript:moveTo('ch01fig06');

7

Fig. 1.5. Converting data into information for Example 1.2

Today, database may contain either data or information (or both), according to the organisations definition and

needs. For example, a database may contain an image of the Employee Master shown in Fig. 1.4 (a) or Customer

Master shown in Fig. 1.5 or Student’s Performance Roaster shown in Fig. 1.6 (a), and also in summarised (trend or

picture) form shown in Figs. 1.4 (b) and 1.6 (b) for decision support functions by the organisation. In this book, the

terms data and information have been treated as synonymous.

1.2.4. Data Warehouse

Data warehouse is a collection of data designed to support management in the decision-making process. It is a

subject-oriented, integrated, time-variant, non-updatable collection of data used in support of management decision-

making processes and business intelligence. It contains a wide variety of data that present a coherent picture of

business conditions at a single point of time. It is a unique kind of database, which focuses on business intelligence,

external data and time-variant data (and not just current data).

javascript:moveTo('ch01fig04');
javascript:moveTo('ch01fig05');
javascript:moveTo('ch01fig06');
javascript:moveTo('ch01fig04');
javascript:moveTo('ch01fig06');

8

Data warehousing is the process, where organisations extract meaning and inform decision making from their

informational assets through the use of data warehouses. It is a recent initiative in information technology and has

evolved very rapidly. A further detail on data warehousing is given in Chapter 20.

1.2.5. Metadata

A metadata (also called the data dictionary) is the data about the data. It is also called the system catalog, which is

the self-describing nature of the database that provides program-data independence. The system catalog integrates

the metadata. The metadata is the data that describes objects in the database and makes easier for those objects to be

accessed or manipulated. It describes the database structure, constraints, applications, authorisation, sizes of data

types and so on. These are often used as an integral tool for information resource management.

Metadata is found in documentation describing source systems. It is used to analyze the source files selected to

populate the largest data warehouse. It is also produced at every point along the way as data goes through the data

integration process. Therefore, it is an important by-product of the data integration process. The efficient

management of a production or enterprise warehouse relies heavily on the collection and storage of metadata.

Metadata is used for understanding the content of the source, all the conversion steps it passes through and how it is

finally described in the target system or data warehouse.

Metadata is used by developers who rely on it to help them develop the programs, queries, controls and procedures

to manage and manipulate the warehouse data. Metadata is also used for creating reports and graphs in front-end

data access tools, as well as for the management of enterprise-wide data and report changes for the end-user.

Change management relies on metadata to administer all of the related objects for example, data model, conversion

programs, load jobs, data definition language (DDL), and so on, in the warehouse that are impacted by a change

request. Metadata is available to database administrators (DBAs), designers and authorised users as on-line system

documentation. This improves the control of database administrators (DBAs) over the information system and the

users’ understanding and use of the system.

1.2.5.1. Types of Metadata

The advent of data warehousing technology has highlighted the importance of metadata. There are three types of

metadata as shown in Fig. 1.7. These metadata are linked to the three-layer data structure as shown in Fig. 1.7.

Fig. 1.7. Metadata layer

http://my.safaribooksonline.com/9788177585674/ch20#ch20
javascript:moveTo('ch01fig07');
javascript:moveTo('ch01fig07');

9

Operational metadata: It describes the data in the various operational systems that feed the enterprise data

warehouse. Operational metadata typically exist in a number of different formats and unfortunately are often of

poor quality.

Enterprise data warehouse (EDW) metadata: These types of metadata are derived from the enterprise data model.

EDW metadata describe the reconciled data layer as well as the rules for transforming operational data to

reconciled data.

Data mart metadata: They describe the derived data layer and the rules for transforming reconciled data to derived

data.

1.2.6. System Catalog

A system catalog is a repository of information describing the data in the database, that is the metadata (or data

about the data). System catalog is a system-created database that describes all database objects, data dictionary

information and user access information. It also describes table-related data such as table names, table creators or

owners, column names, data types, data size, foreign keys and primary keys, indexed files, authorized users, user

access privileges and so forth.

The system catalog is created by the database management system and the information is stored in system files,

which may be queried in the same manner as any other data table, if the user has sufficient access privileges. A

fundamental characteristic of the database approach is that the database system contains not only the database but

also a complete definition or description of the database structure and constraints. This definition is stored in the

system catalog, which contains information such as the structure of each file, the type and storage format of each

data item and various constraints on the data. The information stored in the catalog is called metadata. It describes

the structure of the primary database.

10

1.2.7. Data Item or Fields

A data item is the smallest unit of the data that has meaning to its user. It is traditionally called a field or data

element. It is an occurrence of the smallest unit of named data. It is represented in the database by a value. Names,

telephone numbers, bill amount, address and so on in a telephone bill and name, basic allowances, deductions, gross

pay, net pay and so on in employee salary slip, are a few examples of data. Data items are the molecules of the

database. There are atoms and sub-atomic particles composing each molecule (bits and bytes), but they do not

convey any meaning on their own right and so are of little concern to the users. A data item may be used to

construct other, more complex structures.

1.2.8. Records

A record is a collection of logically related fields or data items, with each field possessing a fixed number of bytes

and having a fixed data type. A record consists of values for each field. It is an occurrence of a named collection of

zero, one, or more than one data items or aggregates. The data items are grouped together to form records. The

grouping of data items can be achieved through different ways to form different records for different purposes.

These records are retrieved or updated using programs.

1.2.9. Files

A file is a collection of related sequence of records. In many cases, all records in a file are of the same record type

(each record having an identical format). If every record in the file has exactly the same size (in bytes), the file is

said to be made up of fixed-length records. If different records in the file have different sizes, the file is said to be

made of variable-length records.

Table 1.3 illustrates an example of a payroll file in tabular form. Each kind of fact in each column, for example,

employees number or home-town is called a field. The collection of facts about a particular employee in one line or

row (for example, all the fields of all the columns) of the table is an example of record. The collection of payroll

facts for all of the employees (all columns and rows), that is, the entire table in Table 1.3 is an example of file.

Table 1.3. Employee payroll file for M/s Metal Rolling Pvt. Ltd.

Employee’s
Number

Employee’s
Last Name

Employee’s
First Name

Basic
Salary
(US$)

Home
Town

Home
Country

Date of
Birth

Marriage
Day

Telephone
Number

106519 Mathew Thomas 4000 Jamshedpur India 06-09-
1957

29.05 2431322

112233 Smith John 4500 Rome Italy 16-11-
1980

10.12 2423206

123456 Kumar Rajeev 6000 Delhi India 20-02-
1959

06.06 2427982

123243 Martin Jose 3500 Mumbai India 11-12-
1965

11.11 2437981

109876 Singh Abhishek 4800 New York USA 05-07-
1973

07.02 2147008

111222 Parasar Alka 5100 Detroit USA 30-09-
1979

06.12 2145063

javascript:moveTo('ch01table03');
javascript:moveTo('ch01table03');

11

Table 1.3. Employee payroll file for M/s Metal Rolling Pvt. Ltd.

Employee’s
Number

Employee’s
Last Name

Employee’s
First Name

Basic
Salary
(US$)

Home
Town

Home
Country

Date of
Birth

Marriage
Day

Telephone
Number

165243 Kumar Avinash 6500 London UK 27-05-
1966

30.01 2407841

1.3. Data Dictionary

Data dictionary (also called information repositories) are mini database management systems that manages

metadata. It is a repository of information about a database that documents data elements of a database. The data

dictionary is an integral part of the database management systems (DBMSs) and stores metadata, or information

about the database, attribute names and definitions for each table in the database. Data dictionaries aid the database

administrator in the management of a database, user view definitions as well as their use.

The most general structure of a data dictionary is shown in Fig. 1.8. It contains descriptions of the database

structure and database use. The data in the data dictionary are maintained by several programs and produce diverse

reports on demand. Most data dictionary systems are stand-alone systems, and their database is maintained

independently of the DBMS, thereby enabling inconsistencies between the database and the data dictionary. To

prevent them, the data dictionary is integrated with DBMSs in which the schema and user view definitions are

controlled through the data dictionary and are made available to the DBMS software.

Fig. 1.8. Structure of data dictionary

Data dictionary is usually a part of the system catalog that is generated for each database. A useful data dictionary

system usually stores and manages the following types of information:

 Descriptions of the schema of the database.

 Detailed information on physical database design, such as storage structures, access paths and file and

record sizes.

 Description of the database users, their responsibilities and their access rights.

 High-level descriptions of the database transactions and applications and of the relationships of users to

transactions.

 The relationship between database transactions and the data items referenced by them. This is useful in

determining which transactions are affected when certain data definitions are changed.

javascript:moveTo('ch01fig08');

12

 Usage statistics such as frequencies of queries and transactions and access counts to different portions of the

database.

Let us take an example of a manufacturing company M/s ABC Motors Ltd., which has decided to computerise its

activities related to various departments. The manufacturing department is concerned with types (or brands) of

motor in its manufacturing inventory, while the personnel department is concerned with keeping track of the

employees of the company. The manufacturing department wants to store the details (also called entity set) such as

the model no., model description and so on. Similarly, personnel department wants to keep the facts such as

employee’s number, last name, first name and so on. Fig. 1.9 illustrates the two data processing (DP) files, namely

INVENTORY file of manufacturing department and EMPLOYEE file of personnel department.

Fig. 1.9. Data processing files of M/s ABC Motors Ltd

Now, though, manufacturing and employee departments are interested in keeping track of their inventory and

employees details respectively, the data processing (DP) department of M/s ABC Motors Ltd., would be interested

in tracking and managing entities (individual fields and the two files), that is the data dictionary. Fig. 1.10 shows a

sample of the data dictionary for the two files (field’s file and file’s file) of Fig. 1.9.

javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig10');
javascript:moveTo('ch01fig09');

13

Fig. 1.10. Data dictionary files of M/s ABC Motors Limited

As it can be seen from Fig. 1.10 that all data fields of both the files are included in field’s file and both the files

(INVENTORY and EMPLOYEE) in the file’s file. Thus, the data dictionary contains the attributes for the field’s

file such as FIELD-NAME, FIELD-TYPE, FIELD-LENGTH and for file’s file such as FILE-NAME and FILE-

LENGTH.

javascript:moveTo('ch01fig10');

14

In the manufacturing department’s INVENTORY file, each row (consisting of fields namely MOD-NO, MOD-

NAME, MOD-DESC, UNIT-PRICE) represents the details of a model of a car, as shown in Fig. 1.9 (a). In the

personnel department’s EMPLOYEE file, each row (consisting of fields namely EMP-NO, EMP-LNAME, EMP-

FNAME, EMP-SALARY) represents details about an employee, as shown in Fig. 1.9 (b). Similarly, in the data

dictionary, each row of the field’s file (consisting of entries namely FIELD-NAME, FIELD-TYPE, FIELD-

LENGTH) represents one of the fields in one of the application data files (in this case INVENTORY and

EMPLOYEE files) processed by the data processing department, as shown in Fig. 1.10 (a). Also, each row of the

file’s file (consisting of entries namely FILE-NAME, FILE-LENGTH) represents one of the application files (in

this case INVENTORY and EMPLOYEE files) processed by data processing department, as shown in Fig. 1.9 (b).

Therefore, we see that, each row of the field’s file in Fig. 1.10 (a) represents one of the fields of one of the files in

Fig. 1.9, and each row of the file’s file in Fig. 1.10 (b) represents one of the files in Fig. 1.9.

Data dictionary also keeps track of the relationships among the entities, which is important in the data processing

environment as how these entities interrelate. Figure 1.11 shows the links (relationship) between fields and files.

These relationships are important for the data processing department.

1.3.1. Components of Data Dictionaries

As discussed in the previous section, data dictionary contains the following components:

 Entities

 Attributes

 Relationships

 Key

1.3.1.1. Entities

Entity is the real physical object or an event; the user is interested in keeping track of. In other words, any item

about which information is stored is called entity. For example, in Fig. 1.9 (b), Thomas Mathew is a real living

person and an employee of M/s ABC Motors Ltd., is an entity for which the company is interested in keeping track

javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig10');
javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig10');
javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig10');
javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig11');
javascript:moveTo('ch01fig09');

15

of the various details or facts. Similarly, in Fig. 1.9 (a), Maharaja model car (Model no. M-1000) is a real physical

object manufactured by M/s ABC Motors Ltd., is an entity. A collection of the entities of the same type, for

example “all” of the company’s employees (the rows in EMPLOYEE file in Fig. 1.9 (b)), and “all” the company’s

model (the rows in INVENTORY file in Fig. 1.9 (a)) are called an entity set. In other words, we can say that, a

record describes the entity and a file describes an entity set.

1.3.1.2. Attributes

An attribute is a property or characteristic (field) of an entity. In Fig. 1.9 (b), Mathew’s EMP-NO, EMP-SALARY

and so forth, all are his attributes. Similarly, in Fig. 1.9 (a), Maharaja car’s MOD-NO, MOD-DESC, UNIT-PRICE

and so forth, all are its attributes. In other words, we can say that, values in all the fields are attributes. Fig. 1.12

shows an example of an entity set and its attributes.

1.3.1.3. Relationships

The associations or the ways that different entities relate to each other is called relationships, as shown in Fig. 1.11.

The relationship between any pair of entities of a data dictionary can have value to some part or department of the

organisation. Some data dictionaries define limited set of relationships among their entities, while others allow the

relationship between every pair of entities. Some examples of common data dictionary relationships are given

below:

 Record construction: for example, which field appears in which records.

 Security: for example, which user has access to which file.

 Impact of change: for example, which programs might be affected by changes to which files.

 Physical residence: for example, which files are residing in which storage device or disk packs.

 Program data requirement: for example, which programs use which file.

 Responsibility: for example, which users are responsible for updating which files.

Relationships could be of following types:

 One-to-one (1:1) relationship

 One-to-many (1:m) relationships

 Many-to-many (n:m) relationships

javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig12');
javascript:moveTo('ch01fig11');

16

Let us take the example shown in Fig. 1.9 (b), wherein there is only one EMP-NO (employee identification

number) in the EMPLOYEE file of personnel department for each employee, which is unique. This is called unary

associations or one-to-one (1:1) relationship, as shown in Fig. 1.13 (a).

Now let us assume that an employee belongs to a manufacturing department. While for a given employee there is

one manufacturing department, in the manufacturing department there may be many employees. Thus, in this case,

there is one-to-one relationship in one direction and a multiple association in the other direction. This combination

is called one-to-many (1:m) relationship, as shown in Fig. 1.13 (b).

Finally, consider the situation in which an employee gets a particular salary. While for a given employee there is

one salary amount (for example, 4000), the same amount may be given to many employees in the department. In

this case, there is multiple associations in both the direction, and this combination is called many-to-many (n:m)

relationship, as shown in Fig. 1.13 (c).

1.3.1.4. Key

The data item (or field) for which a computer uses to identify a record in a database system is referred to as key. In

other words, key is a single attribute or combination of attributes of an entity set that is used to identify one or more

instances of the set. There are various types of keys.

 Primary key

 Concatenated key

 Secondary key

 Super key

Primary key is used to uniquely identify a record. It is also called entity identifier, for example, EMP-NO in the

EMPLOYEE file of Fig. 1.9 (b) and MOD-NO in the INVENTORY file of Fig. 1.9 (a). When more than one data

item is used to identify a record, it is called concatenated key, for example, both EMP-NO and EMP-FNAME in

EMPLOYEE file of Fig. 1.9 (b) and both MOD-NO and MOD-TYPE in INVENTORY file of Fig. 1.9 (a).

javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig13');
javascript:moveTo('ch01fig13');
javascript:moveTo('ch01fig13');
javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig09');
javascript:moveTo('ch01fig09');

17

Secondary key is used to identify all those records, which have a certain property. It is an attribute or combination

of attributes that may not be a concatenated key but that classifies the entity set on a particular characteristic. In

Super key includes any number of attributes that possess a uniqueness property. For example, if we add additional

attributes to a primary key, the resulting combination would still uniquely identify an instance of the entity set.

Such keys are called super keys. Thus, a primary key is a minimum super key.

1.3.2. Active and Passive Data Dictionaries

Data dictionary may be either active or passive. An active data dictionary (also called integrated data dictionary) is

managed automatically by the database management software. Since active data dictionaries are maintained by the

system itself, they are always consistent with the current structure and definition of the database. Most of the

relational database management systems contain active data dictionaries that can be derived from their system

catalog.

The passive data dictionary (also called non-integrated data dictionary) is the one used only for documentation

purposes. Data about fields, files, people and so on, in the data processing environment are entered into the

dictionary and cross-referenced. Passive dictionary is simply a self-contained application and a set of files is used

for documenting the data processing environment. It is managed by the users of the system and is modified

whenever the structure of the database is changed. Since this modification must be performed manually by the user,

it is possible that the data dictionary will not be current with the current structure of the database. However, the

passive data dictionaries may be maintained as a separate database. Thus, it allows developers to remain

independent from using a particular relational database management system for as long as possible. Also, passive

data dictionaries are not limited to information that can be discerned by the database management system. Since

passive data dictionaries are maintained by the user, they may be extended to contain information about

organisational data that is not computerized.

1.5. Database System

A database system, also called database management system (DBMS), is a generalized software system for

manipulating databases. It is basically a computerized record-keeping system; which it stores information and

allows users to add, delete, change, retrieve and update that information on demand. It provides for simultaneous

use of a database by multiple users and tool for accessing and manipulating the data in the database. DBMS is also

a collection of programs that enables users to create and maintain database. It is a general-purpose software system

that facilitates the process of defining (specifying the data types, structures and constraints), constructing (process

of storing data on storage media) and manipulating (querying to retrieve specific data, updating to reflect changes

and generating reports from the data) for various applications.

Typically, a DBMS has three basic components, as shown in Fig. 1.16, and provides the following facilities:

javascript:moveTo('ch01fig16');

18

 Data description language (DDL): It allows users to define the database, specify the data types, and data

structures, and the constraints on the data to be stored in the database, usually through data definition

language. DDL translates the schema written in a source language into the object schema, thereby creating a

logical and physical layout of the database.

 Data manipulation language (DML) and query facility: It allows users to insert, update, delete and retrieve

data from the database, usually through data manipulation language (DML). It provides general query

facility through structured query language (SQL).

 Software for controlled access of database: It provides controlled access to the database, for example,

preventing unauthorized user trying to access the database, providing a concurrency control system to allow

shared access of the database, activating a recovery control system to restore the database to a previous

consistent state following a hardware or software failure and so on.

The database and DBMS software together is called a database system. A database system overcomes the

limitations of traditional file-oriented system such as, large amount of data redundancy, poor data control,

inadequate data manipulation capabilities and excessive programming effort by supporting an integrated and

centralized data structure.

19

1.5.1. Operations Performed on Database Systems

As discussed in the previous section, database system can be regarded as a repository or container for a collection

of computerized data files in the form of electronic filing cabinet. The users can perform a variety of operations on

database systems. Some of the important operations performed on such files are as follows:

 Inserting new data into existing data files

 Adding new files to the database

 Retrieving data from existing files

 Changing data in existing files

 Deleting data from existing files

 Removing existing files from the database.

Let us take an example of M/s Metal Rolling Pvt. Ltd. having a very small database containing just one, called

EMPLOYEE, as shown in Table 1.4. The EMPLOYEE file in turn contains data concerning the details of employee

working in the company. Fig. 1.17 depicts the various operations that can be performed on EMPLOYEE file and

the results thereafter displayed on the computer screen.

Table 1.4. EMPLOYEE file of M/s Metal Rolling Pvt. Ltd.

EMPLOYEE

EMP-NO EMP-LNAME EMP-FNAME SALARY COUNTRY BIRTH-YR MRG-MTH TEL-NO

106519 Mathew Thomas 4000 India 1957 05 2431322

112233 Smith John 4500 Italy 1980 12 2423206

123456 Kumar Rajeev 6000 India 1959 06 2427982

123243 Martin Jose 3500 India 1965 11 2437981

109876 Singh Abhishek 4800 USA 1973 02 2147008

111222 Parasar Alka 5100 USA 1979 12 2145063

165243 Kumar Avinash 6500 UK 1966 01 2407841

javascript:moveTo('ch01table04');
javascript:moveTo('ch01fig17');

20

21

1.6. Data Administrator (DA)

A data administrator (DA) is an identified individual person in the organisation who has central responsibility of

controlling data. As discussed earlier, data are important assets of an organisation.

Therefore, it is important that someone at a senior level in the organisation understands these data and the

organisational needs with respect to data. Thus, a DA is this senior level person in the organisation whose job is to

decide what data should be stored in the database and establish policies for maintaining and dealing with that data.

He decides exactly what information is to be stored in the database, identifies the entities of the interest to the

organisation and the information to be recorded about those entities. A DA decides the content of the database at an

abstract level. This process performed by DA is known as logical or conceptual database design. DAs are the

manager and need not be a technical person, however, knowledge of information technology helps them in an

overall understanding and appreciation of the system.

1.7. Database Administrator (DBA)

A database administrator (DBA) is an individual person or group of persons with an overview of one or more

databases who controls the design and the use of these databases. A DBA provides the necessary technical support

for implementing policy decisions of databases. Thus, a DBA is responsible for the overall control of the system at

technical level and unlike a DA, he or she is an IT professional. A DBA is the central controller of the database

system who oversees and manages all the resources (such as database, DBMS and related software). The DBA is

responsible for authorizing access to the database, for coordinating and monitoring its use and for acquiring

software and hardware resources as needed. They are accountable for security system, appropriate response time

and ensuring adequate performance of the database system and providing a variety of other technical services. The

database administrator is supported with a number of staff or a team of people such as system programmers and

other technical assistants.

1.7.1. Functions and Responsibilities of DBAs

Following are some of the functions and responsibilities of database administrator and his staff:

a. Defining conceptual schema and database creation: A DBA creates the conceptual schema (using data

definition language) corresponding to the abstract level database design made by data administrator. The

DBA creates the original database schema and structure of the database. The object from the schema is used

by DBMS in responding to access requests.

b. Storage structure and access-method definition: DBA decides how the data is to be represented in the stored

database, the process called physical database design. Database administrator defines the storage structure

(called internal schema) of the database (using data definition language) and the access method of the data

from the database.

c. Granting authorisation to the users: One of the important responsibilities of a DBA is the liaising with end-

users to ensure availability of required data to them. A DBA grants access to use the database to its users. It

regulates the usage of specific parts of the database by various users. The authorisation information is kept

in a special system structure that the database system consults whenever someone attempts to access the

data in the system. DBAs assist the user with problem definition and its resolution.

d. Physical organisation modification: The DBA carries out the changes or modification to the description of

the database or its relationship to the physical organisation of the database to reflect the changing needs of

the organisation or to alter the physical organisation to improve performance.

22

e. Routine maintenance: The DBA maintains periodical back-ups of the database, either onto hard disks,

compact disks or onto remote servers, to prevent loss of data in case of disasters. It ensures that enough free

storage space is available for normal operations and upgrading disk space as required. A DBA is also

responsible for repairing damage to the database due to misuse or software and hardware failures. DBAs

define and implement an appropriate damage control mechanism involving periodic unloading or dumping

of the database to backup storage device and reloading the database from the most recent dump whenever

required.

f. Job monitoring: DBAs monitor jobs running on the database and ensure that performance is not degraded by

very expensive tasks submitted by some users. With change in requirements (for example, reorganising of

database), DBAs are responsible for making appropriate adjustment or tuning of the database

1.8. File-Oriented System versus Database System

Computer-based data processing systems were initially used for scientific and engineering calculations. With

increased complexity of business requirements, gradually they were introduced into the business applications. The

manual method of filing systems of an organisation, such as to hold all internal and external correspondence

relating to a project or activity, client, task, product, customer or employee, was maintaining different manual

folders. These files or folders were labelled and stored in one or more cabinets or almirahs under lock and key for

safety and security reasons. As and when required, the concerned person in the organisation used to search for a

specific folder or file serially starting from the first entry. Alternatively, files were indexed to help locate the file or

folder more quickly. Ideally, the contents of each file folder were logically related. For example, a file folder in a

supplier’s office might contain customer data; one file folder for each customer. All data in that folder described

only that customer’s transaction. Similarly, a personnel manager might organise personnel data of employees by

category of employment (for example, technical, secretarial, sales, administrative, and so on). Therefore, a file

folder leveled ‘technical’ would contain data pertaining to only those people whose duties were properly classified

as technical.

The manual system worked well as data repository as long as the data collection were relatively small and the

organisation’s managers had few reporting requirements. However, as the organisation grew and as the reporting

requirements became more complex, it became difficult in keeping track of data in the manual file system. Also,

report generation from a manual file system could be slow and cumbersome. Thus, this manual filing system was

replaced with a computer-based filing system. File-oriented systems were an early attempt to computerize the

manual filing system that we are familiar with. Because these systems performed normal record-keeping functions,

they were called data processing (DP) systems. Rather than establish a centralised store for organisation’s

operational data, a decentralised approach was taken, where each department, with the assistance of DP department

staff, stored and controlled its own data.

Table 1.5 shows an example of file-oriented system of an organisation engaged in product distribution. Each table

represents a file in the system, for example, PRODUCT file, CUSTOMER file, SALES file and so on. Each row in

these files represents a record in the file. PRODUCT file contains 6 records and each of these records contains data

about different products. The individual data items or fields in the PRODUCT file are PRODUCT-ID, PRODUCT-

DESC, MANUF-ID and UNIT-COST. CUSTOMER file contains 5 records and each of these records contains data

about customer. The individual data items in CUSTOMER file are CUST-ID, CUST-NAME, CUST-ADDRESS,

COUNTRY, TEL-NO and BAL–AMT. Similarly, SALES file contains 5 records and each of these records contains

data about sales activities. The individual data items in SALES file are SALES-DATE, CUST-ID, PROD-ID, QTY

and UNIT-PRICE.

javascript:moveTo('ch01table05');

23

Table 1.5. File-oriented system

PRODUCT

PRODUCT-ID PRODUCT-DESC MANUF-ID UNIT-COST

A12345 Steel almirah 100 4000

B23412 Dryer 200 4500

B44332 Freeze 210 6000

A98765 Steel table 105 3500

A29834 Steel chair 110 4800

C11008 Iron moulding 444 5100

CUSTOMER

CUST-ID CUST-NAME CUST-ADDRESS COUNTRY TEL-NO BAL-AMT

1001 Waterhouse Ltd. Box 41, Mumbai India 2147015 45,000

1000 KLY System 41, 1st Street, Chicago USA 2000894 33,550

1005 Megapoints C-12, Pataya, Goa India 2222009 74,314

1010 Concept Shapers 32, Main Road, Ranchi India 4598733 49,444

1006 Trinity Agencies P.O. Box 266, Tokyo Japan 2345678 55,542

SALES

SALE-DATE CUST-ID PROD-ID QTY UNIT-PRICE

02/12/02 1001 A12345 100 6,700

10/10/02 1000 B23412 250 4,000

12/12/03 1010 B44332 120 14,000

01/04/04 1005 A98765 110 5,500

30/02/04 1001 A29834 300 12,999

With the assistance of DP department, the files were used for a number of different applications by the user

departments, for example, account receivable program written to generate billing statements for customers. This

program used the CUSTOMER and SALES files and these files were both stored in the computer in order by

CUST-ID and were merged to create a printed statement. Similarly, sales statement generation program (using

PRODUCT and SALES files) was written to generate product-wise sales performance. This type of program, which

accomplishes a specific task of practical value in a business situation is called application program or application

software. Each application program that is developed is designed to meet the specific needs of the particular

requesting department or user group.

Fig. 1.18 illustrates structures in which application programs are written specifically for each user department for

accessing their own files. Each set of departmental programs handles data entry, file maintenance and the

javascript:moveTo('ch01fig18');

24

generation of a fixed set of specific reports. Here, the physical structure and storage of the data files and records are

defined in the application program. For example:

a. Sales department stores details relating to sales performance, namely SALES(SALE-DATE, CUST-ID,

PROD-ID, QTY, UNIT-PRICE).

b. Customer department stores details relating to customer invoice realization summary, namely CUSTOMER

(CUST-ID, CUST-NAME, CUST-ADD, COUNTRY, TEL-NO, BAL-AMT).

c. Product department stores details relating to product categorization summary, namely PRODUCT (PROD-

ID, PROD-DESC, MANUF-ID, UNIT-COST).

It can be seen from the above examples that there is significant amount of duplication of data storage in different

departments (for example, CUST-ID and PROD-ID), which is generally true with file-oriented system.

1.8.1. Advantages of Learning File-oriented System

Although the file-oriented system is now largely obsolete, following are the several advantages of learning file-

based systems:

 It provides a useful historical perspective on how we handle data.

 The characteristics of a file-based system helps in an overall understanding of design complexity of

database systems.

 Understanding the problems and knowledge of limitation inherent in the file-based system helps avoid these

same problems when designing database systems and thereby resulting in smooth transition.

25

1.8.2. Disadvantages of File-oriented System

Conventional file-oriented system has the following disadvantages:

a. Data redundancy (or duplication): Since a decentralised approach was taken, each department used their

own independent application programs and special files of data. This resulted into duplication of same data

and information in several files, for example, duplication of PRODUCT-ID data in both PRODUCT and

SALES files, and CUST-ID data in both CUSTOMER and SALES files as shown in Table 1.5. This

redundancy or duplication of data is wasteful and requires additional or higher storage space, costs extra

time and money, and requires increased effort to keep all files up-to- date.

b. Data inconsistency (or loss of data integrity): Data redundancy also leads to data inconsistency (or loss of

data integrity), since either the data formats may be inconsistent or data values (various copies of the same

data) may no longer agree or both.

Fig. 1.19 shows an example of data inconsistency in which a field for product description is being shown by

all the three department files, namely SALES, PRODUCT and ACCOUNTS. It can been seen in this

example that even though it was always the product description, the related field in all the three department

files often had a different name, for example, PROD-DESC, PROD-DES and PRODDESC. Also, the same

data field might have different length in the various files, for example, 15 characters in SALES file, 20

characters in PRODUCT file and 10 characters in ACCOUNTS file. Furthermore, suppose a product

description was changed from steel cabinet to steel chair. This duplication (or redundancy) of data increased

the maintenance overhead and storage costs. As shown in Fig. 1.19, the product description filed might be

immediately updated in the SALES file, updated incorrectly next week in the PRODUCT file as well as

ACCOUNT file. Over a period of time, such discrepancies can cause serious degradation in the quality of

information contained in the data files and can also affect the accuracy of reports.

 Program-data dependence: As we have seen, file descriptions (physical structure, storage of the data files and

records) are defined within each application program that accesses a given file. For example, “Account receivable

program” of Fig. 1.18 accesses both CUSTOMER file and SALES file. Therefore, this program contains a detailed

file description for both these files. As a consequence, any change for a file structure requires changes to the file

description for all programs that access the file. It can also be noticed in Fig. 1.18 that SALES file has been used in

both “Account receivable program” and “Sales statement program”. If it is decided to change the CUST-ID field

length from 4 characters to 6 characters, the file descriptions in each program that is affected would have to be

modified to confirm to the new file structure. It is often difficult to even locate all programs affected by such

javascript:moveTo('ch01table05');
javascript:moveTo('ch01fig19');
javascript:moveTo('ch01fig19');
javascript:moveTo('ch01fig18');
javascript:moveTo('ch01fig18');

26

changes. It could be very time consuming and subject to error when making changes. This characteristic of file-

oriented system is known as program-data dependence.

 Poor data control: As shown in Fig. 1.19, a file-oriented system being decentralised in nature, there was no

centralised control at the data element (field) level. It could be very common for the data field to have multiple

names defined by the various departments of an organisation and depending on the file it was in. This could lead to

different meanings of a data field in different context, and conversely, same meaning for different fields. This leads

to a poor data control, resulting in a big confusion.

 Limited data sharing: There is limited data sharing opportunities with the traditional file-oriented system. Each

application has its own private files and users have little opportunity to share data outside their own applications.

To obtain data from several incompatible files in separate systems will require a major programming effort. In

addition, a major management effort may also be required since different organisational units may own these

different files.

 Inadequate data manipulation capabilities: Since File-oriented systems do not provide strong connections

between data in different files and therefore its data manipulation capability is very limited.

 Excessive programming effort: There was a very high interdependence between program and data in file-oriented

system and therefore an excessive programming effort was required for a new application program to be written.

Even though an existing file may contain some of the data needed, the new application often requires a number of

other data fields that may not be available in the existing file. As a result, the programmer had to rewrite the code

for definitions for needed data fields from the existing file as well as definitions of all new data fields. Therefore,

each new application required that the developers (or programmers) essentially start from scratch by designing new

file formats and descriptions and then write the file access logic for each new program. Also, both initial and

maintenance programming efforts for management information applications were significant.

 Security problems: Every user of the database system should not be allowed to access all the data. Each user

should be allowed to access the data concerning his area of application only. Since, applications programs are

added to the file-oriented system in an ad hoc manner, it was difficult to enforce such security system.

1.8.3. Database Approach

The problems inherent in file-oriented systems make using the database system very desirable. Unlike the file-

oriented system, with its many separate and unrelated files, the database system consists of logically related data

stored in a single data dictionary. Therefore, the database approach represents the change in the way end user data

are stored, accessed and managed. It emphasizes the integration and sharing of data throughout the organisation.

Database systems overcome the disadvantages of file-oriented system. They eliminate problems related with data

redundancy and data control by supporting an integrated and centralised data structure. Data are controlled via a

data dictionary (DD) system which itself is controlled by database administrators (DBAs). Fig. 1.20 illustrates a

comparison between file-oriented and database systems.

javascript:moveTo('ch01fig19');
javascript:moveTo('ch01fig20');

27

28

29

1.8.4. Database System Environment

A database system refers to an organisation of components that define and regulate the collection, storage,

management and use of data within a database environment. It consists of four main parts:

 Data

 Hardware

 Software

 Users (People)

Data: From the user’s point of view, the most important component of database system is perhaps the data. The

term data has been explained in Section 1.2.1. The totality of data in the system is all stored in a single database, as

shown in Fig. 1.20 (b). These data in a database are both integrated and shared in a system. Data integration means

that the database can be thought of as a function of several otherwise distinct files, with at least partly eliminated

redundancy among the files. Whereas in data sharing, individual pieces of data in the database can be shared among

different users and each of those users can have access to the same piece of data, possibly for different purposes.

Different users can effectively even access the same piece of data concurrently (at the same time). Such concurrent

access of data by different users is possibly because of the fact that the database is integrated.

Depending on the size and requirement of an organisation or enterprise, database systems are available on machines

ranging from the small personal computers to the large mainframe computers. The requirement could be a single-

user system (in which at most one user can access the database at a given time) or multi-user system (in which

many users can access the database at the same time).

Hardware: All the physical devices of a computer are termed as hardware. The computer can range from a personal

computer (microcomputer), to a minicomputer, to a single mainframe, to a network of computers, depending upon

the organisation’s requirement and the size of the database. From the point of view of the database system the

hardware can be divided into two components:

 The processor and associated main memory to support the execution of database system (DBMS) software

and

 The secondary (or external) storage devices (for example, hard disk, magnetic disks, compact disks and so

on) that are used to hold the stored data, together with the associated peripherals (for example, input/output

devices, device controllers, input/output channels and so on).

A database system requires a minimum amount of main memory and disk space to run. With a large number of

users, a very large amount of main memory and disk space is required to maintain and control the huge quantity of

data stored in a database. In addition, high-speed computers, networks and peripherals are necessary to execute the

large number of data access required to retrieve information in an acceptable amount of time. The advancement in

computer hardware technology and development of powerful and less expensive computers, have resulted into

increased database technology development and its application.

Software: Software is the basic interface (or layer) between the physical database and the users. It is most

commonly known as database management system (DBMS). It comprises the application programs together with

the operating system software. All requests from the users to access the database are handled by DBMS. DBMS

provides various facilities, such as adding and deleting files, retrieving and updating data in the files and so on.

Application software is generally written by company employees to solve a specific common problem.

http://my.safaribooksonline.com/9788177585674/ch01lev1sec2#ch01lev2sec1
javascript:moveTo('ch01fig20');

30

Application programs are written typically in a third-generation programming language (3GL), such as C, C++,

Visual Basic, Java, COBOL, Ada, Pascal, Fortran and so on, or using fourth-generation language (4GL), such as

SQL, embedded in a third-generation language. Application programs use the facilities of the DBMS to access and

manipulate data in the database, providing reports or documents needed for the information and processing needs of

the organisation. The operating system software manages all hardware components and makes it possible for all

other software to run on the computers.

Users: The users are the people interacting with the database system in any form. There could be various categories

of users. The first category of users is the application programmers who write database application programs in

some programming language. The second category of users is the end users who interact with the system from

online workstations or terminals and accesses the database via one of the online application programs to get

information for carrying out their primary business responsibilities. The third category of users is the database

administrators (DBAs), as explained in Section 1.7, who manage the DBMS and its proper functioning. The fourth

category of users is the database designers who design the database structure.

1.8.5. Advantages of DBMS

Due to the centralised management and control, the database management system (DBMS) has numerous

advantages. Some of these are as follows:

a. Minimal data redundancy: In a database system, views of different user groups (data files) are integrated

during database design into a single, logical, centralised structure. By having a centralised database and

centralised control of data by the DBA the unnecessary duplication of data are avoided. Each primary fact is

ideally recorded in only one place in the database. The total data storage requirement is effectively reduced.

It also eliminates the extra processing to trace the required data in a large volume of data. Incidentally, we

do not mean or suggest that all redundancy can or necessarily should be eliminated. Sometimes there are

sound business and technical reasons for maintaining multiple copies of the same data, for example, to

improve performance, model relationships and so on. In a database system, however, this redundancy can be

carefully controlled. That is, the DBMS is aware of it, if it exists and assumes the responsibility for

propagating updates and ensuring that the multiple copies are consistent.

b. Program-data independence: The separation of metadata (data description) from the application programs

that use the data is called data independence. In the database environment, it allows for changes at one level

of the database without affecting other levels. These changes are absorbed by the mappings between the

levels. With the database approach, metadata are stored in a central location called repository. This property

of data systems allows an organisation’s data to change and evolve (within limits) without changing the

application programs that process the data.

c. Efficient data access: DBMS utilizes a variety of sophisticated techniques to store and retrieve data

efficiently. This feature is especially important if the data is stored on external storage devices.

d. Improved data sharing: Since, database system is a centralised repository of data belonging to the entire

organisation (all departments), it can be shared by all authorized users. Existing application programs can

share the data in the database. Furthermore, new application programs can be developed on the existing data

in the database to share the same data and add only that data that is not currently stored, rather having to

define all data requirements again. Therefore, more users and applications can share more of the data.

e. Improved data consistency: Inconsistency is the corollary to redundancy. As explained in Section 1.8.2 (b)

in the file-oriented system, when the data is duplicated and the changes made at one site are not propagated

to the other site, it results into inconsistency. Such database supplies incorrect or contradictory information

to its users. So, if the redundancy is removed or controlled, chances of having inconsistence data is also

removed and controlled. In database system, such inconsistencies are avoided to some extent by making

http://my.safaribooksonline.com/9788177585674/ch01lev1sec7#ch01lev1sec7
javascript:moveTo('ch01lev2sec15');

31

them known to DBMS. DMS ensures that any change made to either of the two entries in the database is

automatically applied to the other one as well. This process is known as propagating updates.

f. Improved data integrity: Data integrity means that the data contained in the database is both accurate and

consistent. Integrity is usually expressed in terms of constraints, which are consistency rules that the

database system should not violate. For example in Table 1.5, the marriage month (MRG-MTH) in the

EMPLOYEE file might be shown as 14 instead of 12. Centralised control of data in the database system

ensures that adequate checks are incorporated in the DBMS to avoid such data integrity problem. For

example, an integrity check for the data field marriage date (MRG-MTH) can be introduced between the

range of 01 and 12. Another integrity check can be incorporated in the database to ensure that if there is

reference to a certain object, that object must exit. For example, in the case of bank’s automatic teller

machine (ATM), a user is not allowed to transfer fund from a nonexistent saving to a checking account.

g. Improved security: Database security is the protection of database from unauthorised users. The database

administrator (DBA) ensures that proper access procedure is followed, including proper authentication

schemes for access to the DBMS and additional checks before permitting access to sensitive data. A DBA

can define (which is enforced by DBMS) user names and passwords to identify people authorised to use the

database. Different levels of security could be implemented for various types of data and operations. The

access of data by authorised user may be restricted for each type of access (for example, retrieve, insert,

modify, update, delete and so on) to each piece of information in the database. The enforcement of security

could be data-value dependent (for example, a works manager has access to the performance details of

employees in his or her department only), as well as data-type dependent (but the manager cannot access the

sensitive data such as salary details of any employees, including those in his or her department).

h. Increased productivity of application development: The DBMS provides many of the standard functions that

the application programmer would normally have to write in a file-oriented application. It provides all the

low-level file-handling routines that are typical in application programs. The provision of these functions

allows the application programmer to concentrate on the specific functionality required by the users without

having to worry about low-level implementation details. DBMSs also provide a high-level (4GL)

environment consisting of productivity tools, such as forms and report generators, to automate some of the

activities of database design and simplify the development of database applications. This results in increased

productivity of the programmer and reduced development time and cost.

i. Enforcement of standards: With central control of the database, a DBA defines and enforces the necessary

standards. Applicable standards might include any or all of the following: departmental, installation,

organisational, industry, corporate, national or international. Standards can be defined for data formats to

facilitate exchange of data between systems, naming conventions, display formats, report structures,

terminology, documentation standards, update procedures, access rules and so on. This facilitates

communication and cooperation among various departments, projects and users within the organisation. The

data repository provides DBAs with a powerful set of tools for developing and enforcing these standards.

j. Economy of scale: Centralising of all the organisation’s operational data into one database and creating a set

of application programs that work on this source of data resulting in drastic cost savings. The DBMS

approach permits consolidation of data and applications. Thus reduces the amount of wasteful overlap

between activities of data-processing personnel in different projects or departments. This enables the whole

organisation to invest in more powerful processors, storage devices or communication gear, rather than

having each department purchase its own (low-end) equipment. Thus, a combined low cost budget is

required (instead of accumulated large budget that would normally be allocated to each department for file-

oriented system) for the maintenance and development of system. This reduces overall costs of operation

and management, leading to an economy of scale.

k. Balance of conflicting requirements: Knowing the overall requirements of the organisation (instead of the

requirements of individual users), the DBA resolves the conflicting requirements of various users and

applications. A DBA can structure the system to provide an overall service that is best for the organisation.

A DBA can chose the best file structure and access methods to get optimal performance for the response-

javascript:moveTo('ch01table05');

32

critical operations, while permitting less critical applications to continue to use the database (with a

relatively slower response). For example, a physical representation can be chosen for the data in storage that

gives fast access for the most important applications.

l. Improved data accessibility and responsiveness: As a result of integration in database system, data that

crosses departmental boundaries is directly accessible to the end-users. This provides a system with

potentially much more functionality. Many DBMSs provide query languages or report writers that allow

users to ask ad hoc questions and to obtain the required information almost immediately at their terminal,

without requiring a programmer to write some software to extract this information from the database. For

example (from Table 1.4), a works manager could list from the EMPLOYEE file, all employees belonging

to India with a monthly salary greater than INR 5000 by entering the following SQL command at a terminal,

as shown in Fig. 1.21.

m. Increased concurrency: DBMSs manage concurrent databases access and prevents the problem of loss of

information or loss of integrity.

n. Reduced program maintenance: The problems of high maintenance effort required in file-oriented system,

as explained in Section 1.8.2 (g), are reduced in database system. In a file-oriented environment, the

descriptions of data and the logic for accessing data are built into individual application programs. As a

result, changes to data formats and access methods inevitably result in the need to modify application

programs. In database environment, data are more independent of the application programs.

o. Improved backup and recovery services: DBMS provides facilities for recovering from hardware or

software failures through its back up and recovery subsystem. For example, if the computer system fails in

the middle of a complex update program, the recovery subsystem is responsible and makes sure that the

database is restored to the state it was in before the program started executing. Alternatively, the recovery

subsystem ensures that the program is resumed from the point at which it was interrupted so that its full

effect is recorded in the database.

p. Improved data quality: The database system provides a number of tools and processes to improve data

quality.

1.8.6. Disadvantages of DBMS

In spite of the advantages, the database approach entails some additional costs and risks that must be recognized

and managed when implementing DBMS. Following are the disadvantages of using DBMS:

a. Increased complexity: A multi-user DBMS becomes an extremely complex piece of software due to

expected functionality from it. It becomes necessary for database designers, developers, database

http://my.safaribooksonline.com/9788177585674/ch01lev1sec5#ch01table04
javascript:moveTo('ch01fig21');
javascript:moveTo('ch01lev2sec15');

33

administrators and end-users to understand this functionality to full advantage of it. Failure to understand

the system can lead to bad design decisions, which can have serious consequences for an organisation.

b. Requirement of new and specialized manpower: Because of rapid changes in database technology and

organisation’s business needs, the organisation’s need to hire, train or retrain its manpower on regular basis

to design and implement databases, provide database administration services and manage a staff of new

people. Therefore, an organisation needs to maintain specialized skilled manpower.

c. Large size of DBMS: The large complexity and wide functionality makes the DBMS an extremely large

piece of software. It occupies many gigabytes of storage disk space and requires substantial amounts of

main memory to run efficiently.

d. Increased installation and management cost: The large and complex DBMS software has a high initial cost.

It requires trained manpower to install and operate and also has substantial annual maintenance and support

costs. Installing such a system also requires upgrades to the hardware, software and data communications

systems in the organisation. Substantial training of manpower is required on an ongoing basis to keep up

with new releases and upgrades. Additional or more sophisticated and costly database software may be

needed to provide security and to ensure proper concurrent updating of shared data.

e. Additional hardware cost: The cost of DBMS installation varies significantly, depending on the environment

and functionality, size of the hardware (for example, micro-computer, mini-computer or main-frame

computer) and the recurring annual maintenance cost of hardware and software.

f. Conversion cost: The cost of conversion (both in terms of money and time) from legacy system (old file-

oriented and/or older database technology) to modern DBMS environment is very high. In some situations,

the cost of DBMS and extra hardware may be insignificant compared with the cost of conversion. This cost

includes the cost of training manpower (staff) to use these new systems and cost of employing specialists

manpower to help with the conversion and running of the system.

g. Need for explicit backup and recovery: For a centralised shared database to be accurate and available all

times, a comprehensive procedure is required to be developed and used for providing backup copies of data

and for restoring a database when damage occurs. A modern DBMS normally automates many more of the

backup and recovery tasks than a file-oriented system.

h. Organisational conflict: A centralised and shared database (which is the case with DBMS) requires a

consensus on data definitions and ownership as well as responsibilities for accurate data maintenance. As

per past history and experience, sometimes there are conflicts on data definitions data formats and coding,

rights to update shared data, and associated issues, which are frequent and often difficult to resolve.

Organisational commitment to the database approach, organisationally astute database administrators and a

sound evolutionary approach to database development is required to handle these issues.

1.10. Database Language

As explained in Section 1.5, for supporting variety of users, a DBMS must provide appropriate languages and

interfaces for each category of users to express database queries and updates. Once the design of database is

complete and a DBMS is chosen to implement the database, it is important to first specify the conceptual and

internal schemas for the database and any mappings between the two. Following languages are used to specify

database schemas:

 Data definition language (DDL)

 Storage definition language (SDL)

 View definition language (VDL)

 Data manipulation language (DML)

 Fourth-generation language (4GL)

http://my.safaribooksonline.com/9788177585674/ch01lev1sec5#ch01lev1sec5

34

In practice, the data definition and data manipulation languages are not two separate languages. Instead they simply

form parts of a single database language and a comprehensive integrated language is used such as the widely used

structured query language (SQL). SQL represents combination of DDL, VDL and DML, as well as statements for

constraints specification and schema evaluation. It includes constructs for conceptual schema definition view

definition, and data manipulation.

1.10.1. Data Definition Language (DDL)

Data definition (also called description) language (DDL) is a special language used to specify a database conceptual

schema using set of definitions. It supports the definition or declaration of database objects (or data element). DDL

allows the DBA or user to describe and name the entities, attributes and relationships required for the application,

together with any associated integrity and security constraints. Theoretically, different DDLs are defined for each

schema in the three-level schema-architecture (for example, for conceptual, internal and external schemas).

However, in practice, there is one comprehensive DDL that allows specification of at least the conceptual and

external schemas.

Various techniques are available for writing data definition language. One widely used technique is writing DDL

into a text file (similar to a source program written using programming languages). Other methods use DDL

compiler or interpreter to process the DDL file or statements in order to identify description of the schema

constructs and to store the schema description in the DBMS catalog (or tables), which can be understood by DBMS.

The result of the compilation of DDL statements is a set of tables stored in specific file collectively called the

system log (explained in Section 1.2.6) or data dictionary.

For example, let us look at the following statements of DDL:

Example 1.

CREATE TABLE PRODUCT
(PROD-ID CHAR (6),
PROD-DESC CHAR (20),
UNIT-COST NUMERIC (4);

Example 2.

CREATE TABLE CUSTOMER
(CUST-ID CHAR (4),
CUST-NAME CHAR (20),
CUST-STREET CHAR (25),
CUST-CITY CHAR (15)
CUST-BAL NUMERIC (10);

Example 3.

CREATE TABLE SALES
(CUST-ID CHAR (4),
PROD-ID CHAR (6),
PROD-QTY NUMERIC (3),

The execution of the above DDL statements will create PRODUCT, CUSTOMER and SALES tables, as illustrated

in Fig. 1.23 (a), (b) and (c) respectively.

http://my.safaribooksonline.com/9788177585674/ch01lev1sec2#ch01lev2sec6
javascript:moveTo('ch01fig23');
javascript:moveTo('ch01fig23');
javascript:moveTo('ch01fig23');

35

1.10.2. Data Storage Definition Language (DSDL)

Data storage definition language (DSDL) is used to specify the internal schema in the database. The mapping

between the conceptual schema (as specified by DDL) and the internal schema (as specified by DSDL) may be

specified in either one of these languages. In DSDL, the storage structure and access methods used by the database

system is specified by set of statements. These statements define the implementation details of the database

schemas, which are usually hidden from the users.

1.10.3. View Definition Language (VDL)

View definition language (VDL) is used to specify user’s views (external schema) and their mappings to the

conceptual schema. However, in most of DBMSs, DDL is used to specify both conceptual and external schemas.

36

There are two views of data. One is the logical view of data. This is the form that the programmer perceives to be

in. The other is the physical view. This reflects the way that data is actually stored on disk (or other storage

devices).

1.10.4. Data Manipulation Language (DML)

Data manipulation language (DML) is a mechanism that provides a set of operations to support the basic data

manipulation operations on the data held in the database. It is used to retrieve data stored in a database, express

database queries and updates. In other words, it helps in communicating with DBMS. Data manipulation applies to

all the three (conceptual, internal and external) levels of schema. The part of DML that provides data retrieval is

called query language.

The DML provides following functional access (or manipulation operations) to the database:

 Retrieve data and/or records from database.

 Add (or insert) records to database files.

 Delete records from database files.

 Retrieve records sequentially in the key sequence.

 Retrieve records in the physically recorded sequence.

 Rewrite records that have been updated.

 Modify data and/or record in the database files.

For example, let us look at the following statements of DML that are specified to retrieve data from tables shown in

Fig. 1.24.

javascript:moveTo('ch01fig24');

37

Example 1.

SELECT PRODUCT.PROD-DESC

FROM PRODUCT

WHERE PROD-ID = ‘B4432’;

The above query (or DML statement) specifies that those rows from the table PRODUCT where the PROD-ID is

B4432 should be retrieved and the PROD-DESC attribute of these rows should be displayed on the screen.

38

Once this query is run for table PRODUCT, as shown in Fig. 1.24 (a), the result will be displayed on the computer

screen as shown below.

B44332 Freeze

Example 2.

SELECT CUSTOMER.CUST-ID,
CUSTOMER.CUST-NAME,

FROM CUSTOMER

WHERE CUST-CITY = ‘Mumbai’;

The above query (or DML statement) specifies that those rows from the table CUSTOMER where the CUST-CITY

is INDIA will be retrieved. The CUST-ID, CUST-NAME and CUST-TEL attributes of these rows will be displayed

on the screen.

Once this query is run for table PRODUCT, as shown in Fig. 1.24 (b), the result will be displayed on the computer

screen as shown below.

1001 Waterhouse Ltd.

1010 Concept Shapers

DML query may be used for retrieving information from more than one table as explained in example 3 below.

Example 3.

SELECT CUSTOMER.CUST-NAME
CUSTOMER.CUST-BAL

FROM SALES.PROD-ID

WHERE SALES.PROD-ID = ‘B23412’

AND CUSTOMER.CUST-ID = SALES.CUST-ID;

The above query (or DML statement) specifies that those rows from the tables CUSTOMER and SALES where the

PROD-ID = B23412 and CUST-ID is same in both the tables will be retrieved and the CUST-BAL attribute of that

row will be displayed on the screen.

Once this query is run for tables CUSTOMER and SALES, as shown in Fig. 1.24 (b) and (c), the result will be

displayed on the computer screen as shown below.

KLY System 40000.00

There are two ways of accessing (or retrieving) data from the database. In one way, an application program issues

an instruction (called embedded statements) to the DBMS to find certain data in the database and returns it to the

program. This is called procedural DML. Procedural DML allows the user to tell the system what data is needed

javascript:moveTo('ch01fig24');
javascript:moveTo('ch01fig24');
javascript:moveTo('ch01fig24');
javascript:moveTo('ch01fig24');

39

and exactly how to retrieve the data. Procedural DML retrieves a record, processes it and retrieves another record

based on the results obtained by this processing and so on. The process of such retrievals continues until the data

request from the retrieval has been obtained. Procedural DML is embedded in a high-level language, which

contains constructs to facilitate iteration and handle navigational logic.

In the second way of accessing the data, the person seeking data sits down at a computer display terminal and issues

a command in a special language (called query) directly to the DBMS to find certain data and returns it to the

display screen. This is called non-procedural DML (or declarative language). Non-procedural DML allows the user

to state what data are needed, rather than how they are to be retrieved.

DBMS translates a DML statement into a procedure (or set of procedures) that manipulates the required set of

records. This removes the concern of the user to know how data structures are internally implemented, what

algorithms are required to retrieve and how to transform the data. This provides users with a considerable degree of

data independence.

1.10.5. Fourth-generation Language (4GL)

The fourth-generation language (4GL) is a compact (a short-hand type), efficient and non-procedural programming

language that is used to improve the productivity of the DBMS. In 4GL, the user defines what is to be done and not

how it is to be done. The 4GL depends on higher-level 4GL tools, which are used by the users to define parameters

to generate an application program. The 4GL has the following components inbuilt in it:

 Query languages

 Report generators

 Spreadsheets

 Database languages

 Application generators to define operations such as insert, retrieve and update data from the database to

build applications

 High-level languages to generate application program.

Structured query language (SQL) and query by example (QBE) are the examples of fourth-generation language.

1.11. Transaction Management

All work that logically represents a single unit is called transaction. The sequence of database operations that

represents a logical unit of work is grouped together as a single transaction and access a database and transforms it

from one state to another. A transaction can update a record, delete a record, modify a set of records and so on.

When the DBMS does a ‘commit’, the changes made by transaction are made permanent. If the changes are not be

made permanent, the transaction can be ‘rollback’ and the database will remain in its original state.

When updates are performed on a database, we need some way to guarantee that a set of updates will succeed all at

once or not at all. Transaction ensures that all the work completes or none of it affects the database. This is

necessary in order to keep the database in a consistent state. For example, a transaction might involve transferring

money from a bank saving account of a person to a checking account. While this would typically involve two

separate database operations. First a withdrawal from the savings account and then a deposit into the checking

account. It is logically considered one unit of work. It is not acceptable to do one operation and not the other

operation because that would violate integrity of the database. Thus, both withdrawal and deposit must be

completed (committed) or partial transaction must be aborted (rolled-back), so that uncompleted work does not

affect database.

40

Consider another example of a railway reservation system in which at any given instant, it is likely that several

travel agents are looking for information about available seats on various trains and routes and making new

reservations. When several users (travel agents) access the railway database concurrently, the DBMS must order

their request carefully to avoid conflicts. For example, when one travel agent looks for a train no. 8314 on some

given day and finds an empty seat, another travel agent may simultaneously be making a reservation for the same

seat, thereby making the information seen by the first agent obsolete.

Through transaction management feature, database management system must protect users from the effect of

system failures or crashes. DBMS ensures that all data and status is restored to a consistent state when system is

restarted after a crash or failure. For example, if the travel agent asks for a reservation to be made and the DBMS

has responded saying that the reservation has been made, the reservation is not lost even if the system crashes or

fails. On the other hand, if the DBMS has not yet responded to the request, but is in the process of making the

necessary changes to the data while the crash occurs, the partial changes are not affected in the database when the

system is restored.

Transaction has, generally, following four properties, called ACID:

 Atomicity

 Consistency

 Isolation

 Durability

Atomicity means that either all the work of a transaction or none of it is applied. With atomicity property of the

transaction, other operations can only access any of the rows involved in transactional access either before the

transaction occurs or after the transaction is complete, but never while the transaction is partially complete.

Consistency means that the transaction’s work will represent a correct (or consistent) transformation of the

database’s state. Isolation requires that a transaction not to be influenced by changes made by other concurrently

executing transactions. Durability means that the work associated with a successfully completed transaction is

applied to the database and is guaranteed to survive system or media failures.

Thus, summarising above arguments, we can say that a transaction is a collection of operations that performs a

single logical function in a database application. Each transaction is a unit of ACID (that is, atomicity, consistency,

isolation and durability). Transaction management plays an important role in shaping many DBMS capabilities,

including concurrency control, backup and recovery and integrity enforcement. Transaction management is further

discussed in greater detail in Chapter 12.

A List of Database Management Systems
This is a list of all the database management systems that I have been able to identify. If you know of any others,

then please email them to me!

The systems are listed by type: relational(R), extended-relational(X), object-relational(OR), object-oriented(OO),

network(N) and hierarchical(H). Note that some vendors state that their DBMS is more than one of these. In such a

case the DBMS type is specified by more than one designation. For example, Centura Software states that their

Velocis database is based on both the relational and network models, and in this case the designation "RN" has been

specified.

http://my.safaribooksonline.com/9788177585674/ch12#ch12

41

For the primary market, some liberties have been taken with regard to the use of the term "Enterprise." Specifically,

if a vendor does not indicate a primary market for their DBMS, then the primary market has been specified as

"Enterprise."

DBMS Vendor Type Primary Market

Access (Jet, MSDE) Microsoft R Desktop

Adabas D Software AG R Enterprise

Adaptive Server Anywhere Sybase R Mobile/Embedded

Adaptive Server Enterprise Sybase R Enterprise

Advantage Database Server Extended Systems R Mobile/Enterprise

Datacom Computer Associates R Enterprise

DB2 Everyplace IBM R Mobile

Filemaker FileMaker Inc. R Desktop

IDMS Computer Associates R Enterprise

Ingres ii Computer Associates R Enterprise

Interbase Inprise (Borland) R Open Source

MySQL Freeware R Open Source

NonStop SQL Tandem R Enterprise

Pervasive.SQL 2000 (Btrieve) Pervasive Software R Embedded

Pervasive.SQL Workgroup Pervasive Software R Enterprise (Windows 32)

Progress Progress Software R Mobile/Embedded

Quadbase SQL Server Quadbase Systems, Inc. Relational Enterprise

R:Base R:Base Technologies Relational Enterprise

Rdb Oracle R Enterprise

Red Brick Informix (Red Brick) R Enterprise (Data Warehousing)

SQL Server Microsoft R Enterprise

SQLBase Centura Software R Mobile/Embedded

SUPRA Cincom R Enterprise

Teradata NCR R VLDB (Data Warehousing)

YARD-SQL YARD Software Ltd. R Enterprise

TimesTen TimesTen Performance Software R In-Memory

Adabas Software AG XR Enterprise

Model 204 Computer Corporation of America XR VLDB

UniData Informix (Ardent) XR Enterprise

UniVerse Informix (Ardent) XR Enterprise

Cache' InterSystems OR Enterprise

Cloudscape Informix OR Mobile/Embedded

DB2 IBM OR Enterprise/VLDB

42

Informix Dynamic Server 2000 Informix OR Enterprise

Informix Extended Parallel Server Informix OR VLDB (Data Warehousing)

Oracle Lite Oracle OR Mobile

Oracle 8I Oracle OR Enterprise

PointBase Embedded PointBase OR Embedded

PointBase Mobile PointBase OR Mobile

PointBase Network Server PointBase OR Enterprise

PostgreSQL Freeware OR Open Source

UniSQL Cincom OR Enterprise

Jasmine ii Computer Associates OO Enterprise

Object Store Exceleron OO Enterprise

Objectivity DB Objectivity OO VLDB (Scientific)

POET Object Server Suite Poet Software OO Enterprise

Versant Versant Corporation OO Enterprise

Raima Database Manager Centura Software RN Mobile/Embedded

Velocis Centura Software RN Enterprise/Embedded

Db.linux Centura Software RNH Open Source/Mobile/Embedded

Db.star Centura Software RNH Open Source/Mobile/Embedded

IMS DB IBM H Enterprise

Entity relationship model defines the conceptual view of database. It works around real world entity and association

among them. At view level, ER model is considered well for designing databases.

Entity

A real-world thing either animate or inanimate that can be easily identifiable and distinguishable. For example, in a

school database, student, teachers, class and course offered can be considered as entities. All entities have some

attributes or properties that give them their identity.

An entity set is a collection of similar types of entities. Entity set may contain entities with attribute sharing similar

values. For example, Students set may contain all the student of a school; likewise Teachers set may contain all the

teachers of school from all faculties. Entities sets need not to be disjoint.

Attributes

Entities are represented by means of their properties, called attributes. All attributes have values. For example, a

student entity may have name, class, age as attributes.

There exist a domain or range of values that can be assigned to attributes. For example, a student's name cannot be

a numeric value. It has to be alphabetic. A student's age cannot be negative, etc.

43

Types of attributes:

 Simple attribute:

Simple attributes are atomic values, which cannot be divided further. For example, student's phone-number

is an atomic value of 10 digits.

 Composite attribute:

Composite attributes are made of more than one simple attribute. For example, a student's complete name

may have first_name and last_name.

 Derived attribute:

Derived attributes are attributes, which do not exist physical in the database, but there values are derived

from other attributes presented in the database. For example, average_salary in a department should be

saved in database instead it can be derived. For another example, age can be derived from data_of_birth.

 Single-valued attribute:

Single valued attributes contain on single value. For example: Social_Security_Number.

 Multi-value attribute:

Multi-value attribute may contain more than one values. For example, a person can have more than one

phone numbers, email_addresses etc.

These attribute types can come together in a way like:

 simple single-valued attributes

 simple multi-valued attributes

 composite single-valued attributes

 composite multi-valued attributes

Entity-set and Keys

Key is an attribute or collection of attributes that uniquely identifies an entity among entity set.

For example, roll_number of a student makes her/him identifiable among students.

 Super Key: Set of attributes (one or more) that collectively identifies an entity in an entity set.

 Candidate Key: Minimal super key is called candidate key that is, supers keys for which no proper subset

are a superkey. An entity set may have more than one candidate key.

 Primary Key: This is one of the candidate key chosen by the database designer to uniquely identify the

entity set.

44

Relationship

The association among entities is called relationship. For example, employee entity has relation works_at with

department. Another example is for student who enrolls in some course. Here, Works_at and Enrolls are called

relationship.

Relationship Set:

Relationship of similar type is called relationship set. Like entities, a relationship too can have attributes. These

attributes are called descriptive attributes.

Degree of relationship

The number of participating entities in an relationship defines the degree of the relationship.

 Binary = degree 2

 Ternary = degree 3

 n-ary = degree

Mapping Cardinalities:

Cardinality defines the number of entities in one entity set which can be associated to the number of entities of

other set via relationship set.

 One-to-one: one entity from entity set A can be associated with at most one entity of entity set B and vice

versa.

One-to-many: One entity from entity set A can be associated with more than one entities of entity set B but from

entity set B one entity can be associated with at most one entity.

45

[Image: One-to-many relation]

Many-to-one: More than one entities from entity set A can be associated with at most one entity of entity set B but

one entity from entity set B can be associated with more than one entity from entity set A.

[Image: Many-to-one relation]

Many-to-many: one entity from A can be associated with more than one entity from B and vice versa.

ER Model has the power of expressing database entities in conceptual hierarchical manner such that, as the

hierarchical goes up it generalize the view of entities and as we go deep in the hierarchy it gives us detail of every

entity included.

46

Going up in this structure is called generalization, where entities are clubbed together to represent a more

generalized view. For example, a particular student named, Mira can be generalized along with all the students, the

entity shall be student, and further a student is person. The reverse is called specialization where a person is student,

and that student is Mira.

Generalization

As mentioned above, the process of generalizing entities, where the generalized entities contain the properties of all

the generalized entities is called Generalization. In generalization, a number of entities are brought together into one

generalized entity based on their similar characteristics. For an example, pigeon, house sparrow, crow and dove all

can be generalized as Birds.

Specialization

Specialization is a process, which is opposite to generalization, as mentioned above. In specialization, a group of

entities is divided into sub-groups based on their characteristics. Take a group Person for example. A person has

name, date of birth, gender etc. These properties are common in all persons, human beings. But in a company, a

person can be identified as employee, employer, customer or vendor based on what role do they play in company.

47

Similarly, in a school database, a person can be specialized as teacher, student or staff; based on what role do they

play in school as entities.

Inheritance

We use all above features of ER-Model, in order to create classes of objects in object oriented programming. This

makes it easier for the programmer to concentrate on what she is programming. Details of entities are generally

hidden from the user, this process known as abstraction.

One of the important features of Generalization and Specialization, is inheritance, that is, the attributes of higher-

level entities are inherited by the lower level entities.

For example, attributes of a person like name, age, and gender can be inherited by lower level entities like student

and teacher etc.

Dr Edgar F. Codd did some extensive research in Relational Model of database systems and came up with twelve

rules of his own which according to him, a database must obey in order to be a true relational database.

These rules can be applied on a database system that is capable of managing is stored data using only its relational

capabilities. This is a foundation rule, which provides a base to imply other rules on it.

	Chapter 1. Introduction to Database Systems
	1.1. Introduction
	1.2. Basic Concepts and Definitions
	1.2.1. Data
	Fig. 1.1. Three-layer data structure

	1.2.2. Information
	Fig. 1.2. Information cycle

	1.2.3. Data Versus Information
	Fig. 1.3. Data versus Information
	Fig. 1.4. Converting data into information for Example 1.1
	Fig. 1.5. Converting data into information for Example 1.2

	1.2.4. Data Warehouse
	1.2.5. Metadata
	1.2.5.1. Types of Metadata
	Fig. 1.7. Metadata layer

	1.2.6. System Catalog
	1.2.7. Data Item or Fields
	1.2.8. Records
	1.2.9. Files

	1.3. Data Dictionary
	Fig. 1.8. Structure of data dictionary
	Fig. 1.9. Data processing files of M/s ABC Motors Ltd
	Fig. 1.10. Data dictionary files of M/s ABC Motors Limited
	1.3.1. Components of Data Dictionaries
	1.3.1.1. Entities
	1.3.1.2. Attributes
	1.3.1.3. Relationships
	1.3.1.4. Key

	1.3.2. Active and Passive Data Dictionaries

	1.5. Database System
	1.5.1. Operations Performed on Database Systems

	1.6. Data Administrator (DA)
	1.7. Database Administrator (DBA)
	1.7.1. Functions and Responsibilities of DBAs

	1.8. File-Oriented System versus Database System
	Table 1.5. File-oriented system
	1.8.1. Advantages of Learning File-oriented System
	1.8.2. Disadvantages of File-oriented System
	1.8.3. Database Approach
	1.8.4. Database System Environment
	1.8.5. Advantages of DBMS
	1.8.6. Disadvantages of DBMS

	1.10. Database Language
	1.10.1. Data Definition Language (DDL)
	Example 1.
	Example 2.
	Example 3.

	1.10.2. Data Storage Definition Language (DSDL)
	1.10.3. View Definition Language (VDL)
	1.10.4. Data Manipulation Language (DML)
	Example 1.
	Example 2.
	Example 3.

	1.10.5. Fourth-generation Language (4GL)

	1.11. Transaction Management

	A List of Database Management Systems
	Entity
	Attributes
	Types of attributes:
	Entity-set and Keys

	Relationship
	Relationship Set:
	Degree of relationship
	Mapping Cardinalities:

	Generalization
	Specialization
	Inheritance

