
1

UNIT III

DATABASE DESIGN & APPLICATION DEVELOPMENT

In the context of Database Management Systems (DBMS), dependencies refer to relationships

between different attributes or columns in a database table. These dependencies are used to define

how the values in one or more attributes determine the values in another attribute. Understanding

dependencies helps in database normalization, ensuring the structure is efficient, free from

redundancy, and can be easily maintained.

Types of Dependencies in DBMS
1. Functional Dependency (FD):

o A functional dependency occurs when one attribute or a set of attributes in a table

uniquely determines the value of another attribute.

o Notation: If A → B, it means that attribute A functionally determines attribute B.

o Example:

 Consider a table Employee (EmpID, EmpName, EmpDept).

 If EmpID → EmpName, it means that for each EmpID, there is a unique

EmpName associated with it.

 EmpID determines EmpName because a specific employee ID

corresponds to only one employee name.

2. Partial Dependency:

o A partial dependency occurs when a non-prime attribute is dependent on part of a

composite primary key (i.e., a key that consists of more than one attribute).

o Example:

 Consider a table Course (CourseID, StudentID, InstructorName,

InstructorPhone), where the primary key is (CourseID, StudentID).

 If CourseID → InstructorName, then InstructorName depends only on

CourseID, which is a part of the composite primary key. This is a partial

dependency because it doesn't depend on the whole key.

3. Transitive Dependency:

o A transitive dependency occurs when one attribute depends on another attribute,

which in turn depends on a third attribute. In other words, if A → B and B → C,

then A → C is a transitive dependency.

o Example:

 Consider a table Student (StudentID, StudentName, CourseName,

InstructorName).

 If StudentID → StudentName and StudentName → InstructorName,

then StudentID → InstructorName is a transitive dependency.

4. Multivalued Dependency (MVD):

o A multivalued dependency occurs when one attribute in a table determines multiple

values for another attribute, and these multiple values are independent of each

other.

o Example:

 Consider a table Employee (EmpID, Skill, Language).

 If an employee can have multiple skills and languages, then EmpID →→

Skill and EmpID →→ Language represent multivalued dependencies,

meaning the skills and languages are independent but both depend on the

employee ID.

2

5. Join Dependency:

o A join dependency occurs when a table can be split into two or more smaller tables,

and the original table can be recreated by performing a join operation on those

smaller tables.

o Example:

 If a table EmployeeProject (EmpID, ProjectID) can be split into two

smaller tables like Employee(EmpID) and Project(ProjectID), then a

join dependency exists between these tables.

6. Boyce-Codd Normal Form (BCNF):

o A special case of functional dependency. A table is in BCNF if for every functional

dependency A → B, A is a superkey.

o Example:

 A table Student (StudentID, CourseID, InstructorID) with

dependencies:

 StudentID → CourseID

 InstructorID → CourseID
 The second dependency InstructorID → CourseID violates BCNF

because InstructorID is not a superkey.

Conclusion

In DBMS, dependencies help define how attributes relate to each other, guiding the normalization

process to minimize redundancy and ensure data integrity. By understanding different types of

dependencies (like functional, partial, transitive, and multivalued), we can design better, more

efficient database schemas.

A deletion anomaly occurs in a database when deleting one piece of information causes the

unintended loss of other related, necessary data. This usually happens in poorly normalized

databases where related data is stored together in a single table, and deleting one part can lead to

the loss of other essential information.

Example of Deletion Anomaly:

Consider a database table that stores information about students and the courses they are enrolled

in:

Student_ID Student_Name Course_Name Professor_Name

101 Alice Math Dr. Smith

102 Bob Physics Dr. Jones

101 Alice Physics Dr. Jones

103 Charlie Math Dr. Smith

In this table, the information about each student's enrollment is stored, including the student name,

course name, and professor's name.

3

Now, imagine if Alice decides to drop the Math course. To remove her enrollment from the Math

course, we would delete the following row:

| 101 | Alice | Math | Dr. Smith |

However, if Dr. Smith is the professor for only Alice's Math course, deleting this row removes

all information about Dr. Smith, including the fact that he is the professor for Alice's other course,

Physics. This results in a deletion anomaly, where removing a single row (Alice's Math

enrollment) also removes important information about the professor (Dr. Smith) that might be

necessary for other students enrolled in the same course (e.g., Charlie).

Consequence:

 The professor's information is lost from the database, even though Dr. Smith is still the

professor for other courses (e.g., Alice's Physics course).

 This can cause inconsistency in the database because now we don't have a clear record of

who the professor is for the Physics course anymore.

Solution:

To avoid this anomaly, the database should be normalized. This can be done by splitting the data

into separate tables to reduce redundancy and avoid losing necessary information when deleting

records:

1. Student Table:
o Student_ID, Student_Name

2. Course Table:
o Course_Name, Professor_Name

3. Enrollment Table:

o Student_ID, Course_Name

By normalizing the database, deleting a student's enrollment from a course will not result in the

loss of professor information, as the professor data is stored in a separate table.

An updation anomaly occurs when the same piece of data is stored in multiple places

(redundancy), and when an update is made to one instance of that data, it is not reflected in other

instances, leading to inconsistency. This happens when data is repeated in different places but is

not properly related, typically in a poorly normalized database.

Example of Updation Anomaly:

Consider a database table that stores information about employees and the departments they belong

to:

4

Employee_ID Employee_Name Department_Name Department_Location

101 John HR New York

102 Sarah Finance London

103 Mark HR New York

104 Anna Marketing Paris

105 Paul Finance London

In this table:

 The Department_Name and Department_Location are repeated for multiple employees.

 For example, John and Mark both belong to the HR department, which is located in New

York.

 Sarah and Paul belong to the Finance department, which is located in London.

Scenario: Updation Anomaly

Let’s say that the HR department moves its office from New York to San Francisco. Now, we

need to update the Department_Location for all employees in the HR department.

If we only update the row for John (e.g., change the location to "San Francisco") and forget to

update the row for Mark, the data becomes inconsistent:

Employee_ID Employee_Name Department_Name Department_Location

101 John HR San Francisco

102 Sarah Finance London

103 Mark HR New York

104 Anna Marketing Paris

105 Paul Finance London

In this case:

 The HR department is listed as being in San Francisco for John but still listed as being

in New York for Mark, even though both belong to the same department.

 This results in an updation anomaly, where the same data (department location) is not

updated consistently across all records, leading to data inconsistency.

Solution:

To avoid an updation anomaly, the database should be normalized. The solution is to separate the

employee data from department data, which eliminates redundancy and ensures that updates can

be made in one place.

1. Employee Table:

o Employee_ID, Employee_Name, Department_ID

2. Department Table:

5

o Department_ID, Department_Name, Department_Location

By normalizing the database, you would store the department information in one table, and refer

to it in the employee table through a Department_ID. Updating the location of the HR department

in the Department Table would automatically reflect for all employees in that department without

having to update each employee's record.

Example of normalized tables:

Employee Table:

Employee_ID Employee_Name Department_ID

101 John 1

102 Sarah 2

103 Mark 1

104 Anna 3

105 Paul 2

Department Table:

Department_ID Department_Name Department_Location

1 HR New York

2 Finance London

3 Marketing Paris

Now, if the HR department moves to San Francisco, you only need to update the Department

Table once, and all employees in the HR department (John and Mark) will reflect the updated

location automatically, avoiding the updation anomaly.

An insertion anomaly occurs when we are unable to insert data into a database due to the absence

of certain required attributes or data that may not be available at the time of insertion. This typically

happens in a poorly normalized database where multiple pieces of information are stored together,

and inserting data requires filling in unrelated or irrelevant fields, which can be problematic when

some data is missing.

Example of Insertion Anomaly:

Consider a database table that stores information about employees and the projects they are

assigned to:

Employee_ID Employee_Name Project_Name Project_Deadline

101 John Website Redesign 2024-12-15

102 Sarah Mobile App 2024-11-30

6

In this table, every time we insert an employee's project details, we need to fill in both the

employee's information (name, ID) and the project details (name, deadline).

Scenario: Insertion Anomaly

Now, suppose we want to insert a new employee, Mark, who has not yet been assigned to a

project. We might try to insert his details like this:

Employee_ID Employee_Name Project_Name Project_Deadline

103 Mark NULL NULL

However, because the Project_Name and Project_Deadline fields are required (i.e., they cannot

be left empty or NULL due to database constraints), we are unable to insert Mark's record into

the table, even though the employee exists and should be part of the database.

Why This Happens:

 The table design forces us to insert project-related data even though Mark may not yet

be assigned to any project.

 This creates an insertion anomaly because Mark's data cannot be inserted due to the

absence of project details, even though we don't yet have any relevant project information

for him.

Solution:

To solve this problem, we can normalize the database by separating the employee data and

project data into different tables, and linking them with a relationship table. This way, we can

insert employee data without needing project details right away, and then associate the employee

with a project when the information becomes available.

1. Employee Table:
o Employee_ID, Employee_Name

2. Project Table:

o Project_ID, Project_Name, Project_Deadline

3. Employee_Project Table (Relationship Table):
o Employee_ID, Project_ID

Now, we can insert Mark's data into the Employee Table without worrying about the project

details:

Employee Table:

Employee_ID Employee_Name

101 John

102 Sarah

103 Mark

7

When Mark is assigned to a project, we can insert the relevant data into the Employee_Project

Table:

Employee_Project Table:

Employee_ID Project_ID

103 2

This ensures that we can insert employee records even if they are not yet assigned to a project,

avoiding the insertion anomaly.

1NF (First Normal Form) is a property of a relational database table that ensures the following:

1. Atomicity: Each column contains atomic (indivisible) values, meaning no multiple values

or sets of values are stored in a single column.

2. Uniqueness: Each record (row) in the table must be unique, and there should be no

duplicate rows.

3. No repeating groups: Each column must contain unique, single values, and there should

be no repeating groups or arrays within a column.

Example of a Table Not in 1NF:

Consider the following table that stores information about students and the courses they are

enrolled in:

Student_ID Student_Name Courses

101 Alice Math, Physics

102 Bob Chemistry, Biology

103 Charlie Math, Chemistry

In this table:

 The Courses column contains multiple values for each student (e.g., Alice has "Math,

Physics" in one column, and Bob has "Chemistry, Biology").

 This violates 1NF, because each column must contain atomic values, and the Courses

column should not contain multiple values.

Converting the Table to 1NF:

To convert the table to 1NF, we must ensure that each column contains only atomic values. So,

we will create a new row for each course a student is enrolled in.

The table in 1NF will look like this:

Student_ID Student_Name Course

101 Alice Math

8

Student_ID Student_Name Course

101 Alice Physics

102 Bob Chemistry

102 Bob Biology

103 Charlie Math

103 Charlie Chemistry

Why This is Now in 1NF:

 The Courses column has been split into individual rows, ensuring each column holds only

a single value per row.

 There are no multiple values in any column (atomicity is preserved).

 The table now satisfies 1NF, as each column contains atomic values and there are no

repeating groups or sets of values.

Summary:

The original table was not in 1NF because the Courses column contained multiple values for each

student. After splitting the data, the table now follows 1NF, with each row representing a single

atomic value for each student-course relationship.

2NF (Second Normal Form) builds upon the rules of 1NF (First Normal Form) and addresses

partial dependencies. A table is in 2NF if:

1. It is in 1NF.

2. It does not have partial dependencies. That means every non-prime attribute (non-key

attribute) must be fully dependent on the entire primary key, not just part of it.

A partial dependency occurs when a non-key attribute depends only on part of a composite

primary key rather than the whole key.

Example of a Table Not in 2NF:

Let's consider a table that stores information about student enrollments and courses:

Student_ID Course_ID Student_Name Course_Name Instructor

101 301 Alice Math Dr. Smith

101 302 Alice Physics Dr. Jones

102 301 Bob Math Dr. Smith

103 303 Charlie Chemistry Dr. White

9

In this table:

 Primary Key: The combination of Student_ID and Course_ID uniquely identifies each

row because a student can take multiple courses, and each course can have multiple

students.

 The non-key attributes are Student_Name, Course_Name, and Instructor.

Why This Table Is Not in 2NF:

 The table is in 1NF, as it contains atomic values.

 However, there are partial dependencies:

o Student_Name depends only on Student_ID, not the whole composite key

(Student_ID, Course_ID).

o Course_Name and Instructor depend only on Course_ID, not the whole

composite key (Student_ID, Course_ID).

Since these non-key attributes depend only on part of the primary key, the table violates 2NF.

Converting the Table to 2NF:

To bring the table into 2NF, we need to remove partial dependencies. We can do this by creating

separate tables for students, courses, and enrollments, where each non-key attribute is fully

dependent on the primary key.

1. Student Table (Stores student-specific information):

Student_ID Student_Name

101 Alice

102 Bob

103 Charlie

2. Course Table (Stores course-specific information):

Course_ID Course_Name Instructor

301 Math Dr. Smith

302 Physics Dr. Jones

303 Chemistry Dr. White

3. Enrollment Table (Stores which student is enrolled in which course):

Student_ID Course_ID

101 301

101 302

102 301

103 303

10

Why This Table Is Now in 2NF:

 Each table is in 1NF, as all values are atomic.

 In the Student Table, Student_Name depends entirely on Student_ID (a single attribute

primary key).

 In the Course Table, both Course_Name and Instructor depend entirely on Course_ID

(a single attribute primary key).

 In the Enrollment Table, the Student_ID and Course_ID together act as the composite

primary key, and there are no partial dependencies.

Now, there are no non-key attributes that depend on only part of the primary key. Each non-key

attribute is fully functionally dependent on the entire primary key, satisfying 2NF.

Summary:

The original table was not in 2NF because there were partial dependencies (e.g., Student_Name

depends only on Student_ID, and Course_Name depends only on Course_ID). After splitting

the table into three tables, each non-key attribute is fully dependent on the whole primary key,

and the database is now in 2NF.

3NF (Third Normal Form) builds upon the rules of 2NF (Second Normal Form) and addresses

transitive dependencies. A table is in 3NF if:

1. It is in 2NF.

2. It has no transitive dependencies. This means that non-prime attributes (attributes that are

not part of the primary key) should not depend on other non-prime attributes. Every non-

prime attribute should depend only on the primary key and not on other non-prime

attributes.

Example of a Table Not in 3NF:

Let's consider a table storing information about students, the courses they are enrolled in, and

their respective instructors:

Student_ID Course_ID Student_Name Course_Name Instructor Instructor_Phone

101 301 Alice Math Dr. Smith 123-456-7890

101 302 Alice Physics Dr. Jones 987-654-3210

102 301 Bob Math Dr. Smith 123-456-7890

103 303 Charlie Chemistry Dr. White 555-123-4567

Why This Table is Not in 3NF:

 The table is in 2NF because it satisfies both 1NF and 2NF (no partial dependencies).

 However, there is a transitive dependency:

o Instructor_Phone depends on Instructor, which is not a primary key but a non-

prime attribute.

11

o Instructor itself depends on Course_ID (since each course has a specific

instructor), and therefore Instructor_Phone is transitively dependent on

Course_ID through Instructor.

This creates redundancy because the Instructor_Phone number is repeated for every row where

the same Instructor is teaching the course.

Converting the Table to 3NF:

To convert the table to 3NF, we need to remove the transitive dependency. This can be done by

separating the Instructor and Instructor_Phone information into a new table, and linking it with

the Course table.

1. Student Table (stores student information):

Student_ID Student_Name

101 Alice

102 Bob

103 Charlie

2. Course Table (stores course information, including the instructor):

Course_ID Course_Name Instructor_ID

301 Math 1

302 Physics 2

303 Chemistry 3

3. Instructor Table (stores instructor information):

Instructor_ID Instructor Instructor_Phone

1 Dr. Smith 123-456-7890

2 Dr. Jones 987-654-3210

3 Dr. White 555-123-4567

4. Enrollment Table (stores which students are enrolled in which courses):

Student_ID Course_ID

101 301

101 302

102 301

103 303

12

Why This Table is Now in 3NF:

 The database is now in 2NF, as we eliminated partial dependencies by separating the

student, course, and instructor information into distinct tables.

 The table is in 3NF because there are no transitive dependencies:

o Instructor_Phone now depends directly on the Instructor_ID in the Instructor

Table, which is the primary key for that table.

o Instructor depends on Instructor_ID, and Instructor_Phone depends on

Instructor_ID, so no non-prime attribute depends on another non-prime attribute

in any table.

In essence, we've removed the indirect relationship between Instructor_Phone and Course_ID

that existed through Instructor.

Summary:

The original table was not in 3NF because it had a transitive dependency (Instructor_Phone →

Instructor → Course_ID). After normalizing the database into four separate tables, the transitive

dependency was eliminated, ensuring that all non-key attributes depend directly on the primary

key, and the database is now in 3NF.

BCNF (Boyce-Codd Normal Form) is a higher level of normalization that builds upon 3NF

(Third Normal Form). A table is in BCNF if:

1. It is in 3NF.

2. For every non-trivial functional dependency X→YX \to YX→Y, XXX must be a

superkey. A superkey is a set of attributes that uniquely identifies a record in a table. In

other words, if a non-prime attribute depends on another attribute, that attribute must be a

superkey.

This means BCNF removes any remaining functional dependencies where non-prime attributes

are dependent on non-superkey attributes, which might still be allowed in 3NF.

Example of a Table Not in BCNF:

Let's consider a table that stores information about students, courses, and instructors:

Student_ID Course_ID Instructor_ID Instructor_Name

101 301 1 Dr. Smith

102 301 1 Dr. Smith

103 302 2 Dr. Jones

104 303 3 Dr. White

13

Functional Dependencies:

 Student_ID, Course_ID → Instructor_ID, Instructor_Name (A combination of

Student_ID and Course_ID uniquely determines the instructor's details).

 Instructor_ID → Instructor_Name (Each instructor has a unique name).

Why This Table is Not in BCNF:

 The table is in 3NF because there are no transitive dependencies, and all non-key attributes

depend on the entire primary key.

 However, there is a functional dependency where Instructor_ID → Instructor_Name,

but Instructor_ID is not a superkey (since Student_ID, Course_ID is the primary key).

This violates BCNF, as Instructor_ID is not a superkey, but it determines the

Instructor_Name.

Converting the Table to BCNF:

To make the table BCNF compliant, we need to separate the instructor information into its own

table, ensuring that Instructor_ID is a superkey in its own table.

We can split the data into two tables:

1. Instructor Table (stores instructor details):

Instructor_ID Instructor_Name

1 Dr. Smith

2 Dr. Jones

3 Dr. White

2. Enrollment Table (stores student-course relationships):

Student_ID Course_ID Instructor_ID

101 301 1

102 301 1

103 302 2

104 303 3

Why This is Now in BCNF:

 The Instructor Table satisfies BCNF because Instructor_ID is now a superkey in that

table.

 The Enrollment Table still has Student_ID, Course_ID as the primary key, and there is

no violation of BCNF because no non-key attribute depends on anything other than the

superkey.

14

By separating the data into two tables, we eliminated the non-superkey dependency (where

Instructor_ID → Instructor_Name), ensuring the database is now in BCNF.

Summary:

The original table violated BCNF because Instructor_ID determined Instructor_Name, but

Instructor_ID was not a superkey. After splitting the table into two tables—one for Instructor

and one for Enrollment—we ensured that every non-trivial functional dependency is based on a

superkey, thus bringing the database into BCNF.

Multi-Valued Dependencies (MVD) and Fourth Normal Form (4NF)

4NF (Fourth Normal Form) is a higher level of normalization that deals with multi-valued

dependencies (MVDs). A table is in 4NF if:

1. It is in BCNF (Boyce-Codd Normal Form).

2. It has no multi-valued dependencies. A multi-valued dependency occurs when one

attribute determines multiple independent values for another attribute, and those values are

not related to other attributes in the table.

In other words, a table is in 4NF if no non-trivial multi-valued dependency exists. A multi-valued

dependency exists when a row in a table implies several independent facts, each of which should

be represented by a separate row.

What is a Multi-Valued Dependency (MVD)?

A multi-valued dependency (MVD) occurs when one attribute (or set of attributes) determines

multiple values for another attribute, but these multiple values are independent of each other. This

means that there is no relationship between the multiple values for an attribute, and they should be

stored separately.

Formally, if for a relation RRR, we have attributes A,B,CA, B, CA,B,C, then a multi-valued

dependency A→→BA \to\to BA→→B holds if for each value of AAA, there is a set of values for

BBB that is independent of the values in other attributes like CCC.

Example of a Table Not in 4NF:

Let’s consider a table that stores information about students, their courses, and the hobbies they

have:

Student_ID Course Hobby

101 Math Reading

101 Physics Painting

101 Math Cycling

15

Student_ID Course Hobby

102 Chemistry Gardening

102 Biology Reading

103 History Painting

Functional Dependencies:

 Student_ID, Course → (Student information and course are linked).

 Student_ID → (Student details are dependent on the Student_ID).

Why This Table is Not in 4NF:

This table contains a multi-valued dependency:

 Student_ID →→ Hobby: A student can have multiple hobbies, but the hobbies are

independent of the courses the student is enrolled in.

 Student_ID →→ Course: A student can be enrolled in multiple courses, but the courses

are independent of the hobbies.

Thus, the table violates 4NF because we are storing both the courses and hobbies for each student

in the same table, which results in redundancy. Specifically, for Student_ID 101, we have:

 Math → Reading, Painting, Cycling

 Physics → Reading, Painting, Cycling

Converting the Table to 4NF:

To bring this table into 4NF, we need to eliminate the multi-valued dependencies by creating

separate tables for the independent facts (courses and hobbies). Each fact (course and hobby)

should be stored in a separate table with a reference to the Student_ID.

We split the original table into two tables:

1. Student_Courses Table (stores which courses a student is enrolled in):

Student_ID Course

101 Math

101 Physics

102 Chemistry

102 Biology

103 History

2. Student_Hobbies Table (stores the hobbies of a student):

16

Student_ID Hobby

101 Reading

101 Painting

101 Cycling

102 Gardening

102 Reading

103 Painting

Why These Tables are Now in 4NF:

 Each table is in BCNF because each non-key attribute is fully dependent on the primary

key, and there are no non-trivial functional dependencies violating BCNF.

 Both tables are now in 4NF because:

o The multi-valued dependencies are eliminated. The hobbies of a student and the

courses a student is enrolled in are stored independently in separate tables.

o There is no redundancy caused by storing multiple independent values for a student

in the same table.

Summary:

The original table violated 4NF because it had multi-valued dependencies: Student_ID →→

Hobby and Student_ID →→ Course, which led to redundancy. By splitting the table into two

separate tables—one for Student_Courses and one for Student_Hobbies—we eliminated the

multi-valued dependencies and brought the table into 4NF.

Join Dependencies and Fifth Normal Form (5NF)

5NF (Fifth Normal Form), also known as Projection-Join Normal Form (PJNF), deals with

join dependencies. A table is in 5NF if:

1. It is in 4NF (Fourth Normal Form).

2. It does not contain any join dependencies that are not implied by the candidate keys.

A join dependency occurs when a table can be reconstructed (or decomposed) into multiple tables,

but the decomposition involves losing data because the relationships between attributes are not

clear. In simpler terms, 5NF requires that all data be fully reconstructed using joins without losing

any information. A table is in 5NF when it cannot be decomposed into smaller tables without

losing data or introducing redundancy.

What is a Join Dependency?

A join dependency occurs when a table contains attributes that, when decomposed into separate

tables, can still be joined back together without loss of information, but the decomposition doesn't

necessarily follow from the candidate keys. A table that satisfies 5NF doesn't have unnecessary

join dependencies.

17

Example of a Table Not in 5NF:

Consider a table storing information about students, courses, and the instructors of those courses:

Student_ID Course_ID Instructor_ID

101 301 1

101 302 2

102 301 1

103 303 3

103 302 2

Functional Dependencies:

 Student_ID, Course_ID → Instructor_ID (A student is enrolled in a specific course,

which is taught by a specific instructor).

Why This Table is Not in 5NF:

In this table, we have a join dependency because it can be decomposed into smaller tables, but

this decomposition does not naturally follow from the candidate keys and may result in

redundancy:

 Student_Courses Table:

Student_ID Course_ID

101 301

101 302

102 301

103 303

103 302

 Course_Instructors Table:

Course_ID Instructor_ID

301 1

302 2

303 3

 Student_Course_Instructors Table:

Student_ID Instructor_ID

101 1

101 2

18

Student_ID Instructor_ID

102 1

103 2

103 3

This decomposition introduces redundancy and loss of information since when the tables are joined

back, we might encounter situations where the Instructor_ID is incorrectly paired with a

Student_ID and Course_ID combination, which leads to spurious tuples (invalid combinations).

Converting the Table to 5NF:

To make the table comply with 5NF, we need to break it down further to ensure there is no

unnecessary decomposition and that no additional relationships are implied by the decomposition.

A proper decomposition would involve separating the attributes that do not have any intrinsic

relationship but are being forced into a single table, resulting in a lossless decomposition.

We can decompose the original table into the following smaller tables that each represent a fact

independently:

1. Student_Courses Table (records which students are enrolled in which courses):

Student_ID Course_ID

101 301

101 302

102 301

103 303

103 302

2. Course_Instructors Table (records which courses are taught by which instructors):

Course_ID Instructor_ID

301 1

302 2

303 3

3. Student_Instructors Table (records which students are taught by which instructors):

Student_ID Instructor_ID

101 1

101 2

102 1

103 2

103 3

19

Why This is Now in 5NF:

 Each of the smaller tables now represents a single fact, and we have eliminated any join

dependencies that might have caused redundant data.

 These smaller tables can be joined back together (using Student_ID and Course_ID, or

Instructor_ID) without creating redundant or spurious data.

 The decomposition is now lossless because each table contains only facts that are directly

related, and we can always reconstruct the original table by joining the smaller tables back

together.

Summary:

The original table violated 5NF because it had a join dependency: it could be decomposed into

smaller tables, but this decomposition did not naturally follow from the candidate keys and led to

redundant data. After decomposing the table into three smaller tables (Student_Courses,

Course_Instructors, and Student_Instructors), the table is now in 5NF because the decomposition

is lossless, and no further splitting is possible without losing data or creating redundancy.

Decomposition Rules and Example

Decomposition in the context of database normalization refers to breaking down a large, complex

table into smaller, more manageable tables while preserving the original data and ensuring that no

information is lost in the process. The goal is to achieve the desired normal form (e.g., 3NF,

BCNF, 4NF, 5NF) through decomposition.

There are certain rules that guide the decomposition of a table to achieve a higher normal form,

particularly for 3NF, BCNF, and 4NF.

Decomposition Rules:

1. Lossless Decomposition:

o A decomposition is lossless if you can recover the original relation by joining the

decomposed relations.

o This means no information is lost, and no spurious tuples are introduced when

performing the join.

2. Dependency-Preserving Decomposition:

o A decomposition is dependency-preserving if the functional dependencies that

were valid in the original table still hold in the decomposed tables, so you don’t

lose the ability to enforce constraints.

3. Preserving Keys: The keys of the original table should be preserved in the decomposed

tables, so that they can still be used to uniquely identify records.

Example of Decomposition:

Let’s consider a table that contains information about students, courses, and instructors:

20

Student_ID Course_ID Instructor Instructor_Phone Student_Name

101 301 Dr. Smith 123-456-7890 Alice

102 301 Dr. Smith 123-456-7890 Bob

101 302 Dr. Jones 987-654-3210 Alice

103 303 Dr. White 555-123-4567 Charlie

Step 1: Identify Functional Dependencies

Based on the data, we can identify some functional dependencies:

1. Student_ID, Course_ID → Student_Name: A student has a specific name.

2. Course_ID → Instructor: A course has a specific instructor.

3. Instructor → Instructor_Phone: Each instructor has a specific phone number.

4. Student_ID, Course_ID → Instructor: A student takes a course with a specific instructor.

Step 2: Analyze Violations of Normal Forms

 1NF: The table is in 1NF as it does not contain any repeating groups or nested data.

 2NF: The table violates 2NF because it has partial dependencies. For example,

Instructor_Phone is dependent on Instructor, but Instructor is not part of the primary

key (which is Student_ID, Course_ID).

 3NF: The table violates 3NF because of the transitive dependency: Instructor →

Instructor_Phone (non-prime attribute Instructor_Phone depends on non-prime

attribute Instructor).

 BCNF: The table violates BCNF because Instructor → Instructor_Phone, and

Instructor is not a superkey.

Step 3: Decompose into 3NF (or BCNF) Using Decomposition Rules

To bring the table to 3NF, we’ll break it down into smaller tables:

1. Student_Courses Table (Removes partial dependency):

Student_ID Course_ID Student_Name

101 301 Alice

102 301 Bob

101 302 Alice

103 303 Charlie

 Primary key: Student_ID, Course_ID

 Functional dependency: Student_ID, Course_ID → Student_Name (no partial

dependencies)

2. Course_Instructors Table (Removes transitive dependency):

21

Course_ID Instructor Instructor_Phone

301 Dr. Smith 123-456-7890

302 Dr. Jones 987-654-3210

303 Dr. White 555-123-4567

 Primary key: Course_ID

 Functional dependency: Course_ID → Instructor, Instructor → Instructor_Phone

3. Instructor Table (Store information about instructors separately):

Instructor Instructor_Phone

Dr. Smith 123-456-7890

Dr. Jones 987-654-3210

Dr. White 555-123-4567

 Primary key: Instructor

 Functional dependency: Instructor → Instructor_Phone

Step 4: Verify Decomposition

 Lossless Join: We can join the three tables back together on the appropriate keys

(Student_ID, Course_ID, and Course_ID) to reconstruct the original table without losing

any data.

 Dependency Preservation: The functional dependencies are preserved in the decomposed

tables. For example, Course_ID → Instructor is directly represented in the

Course_Instructors Table, and Instructor → Instructor_Phone is represented in the

Instructor Table.

 No Redundancy: Each table now stores related information, and there is no unnecessary

duplication of data. Instructor_Phone is stored only in the Instructor Table, and

Student_Name is stored only in the Student_Courses Table.

Summary of the Decomposed Tables:

1. Student_Courses Table:

Student_ID Course_ID Student_Name

101 301 Alice

102 301 Bob

101 302 Alice

103 303 Charlie

2. Course_Instructors Table:

22

Course_ID Instructor Instructor_Phone

301 Dr. Smith 123-456-7890

302 Dr. Jones 987-654-3210

303 Dr. White 555-123-4567

3. Instructor Table:

Instructor Instructor_Phone

Dr. Smith 123-456-7890

Dr. Jones 987-654-3210

Dr. White 555-123-4567

Conclusion:

This example shows the decomposition process to bring a table to 3NF (or even BCNF). By

splitting the data into smaller, more manageable tables and following the decomposition rules

(lossless decomposition, dependency preservation, and key preservation), we eliminate

redundancy and ensure the data is stored in a normalized manner. This decomposition also makes

it easier to maintain and enforce consistency across the database.

In Database Management Systems (DBMS), lossless decomposition refers to the process of

decomposing a relational schema (table) into smaller schemas (subtables) in such a way that no

information is lost in the process. After decomposition, you should be able to reconstruct the

original relation (table) from the decomposed relations using natural joins without any loss of data.

Lossless decomposition is crucial for normalization, a process that reduces redundancy and

ensures that the database is free of anomalies. A decomposition is lossless if the natural join of the

decomposed relations results in the original relation, and no data is lost or incorrectly discarded.

Formal Definition of Lossless Decomposition:
A decomposition of a relation R into two (or more) sub-relations R1 and R2 is lossless if:

1. R1 ∩ R2 → R1 or

2. R1 ∩ R2 → R2.

In simple terms, for the decomposition to be lossless, the intersection of the decomposed relations

must contain enough information (a key) to allow the original relation to be reconstructed by

joining the decomposed relations.

Conditions for Lossless Decomposition:

A decomposition of a relation R into sub-relations R1, R2, ..., Rn is lossless if:

 There exists a set of attributes (called common attributes) between the decomposed

relations such that the attributes from the original relation can be reconstructed using a

join.

 The common attributes between the relations should include a candidate key from the

original relation.

Example of Lossless Decomposition:

Step 1: Original Relation

23

Consider a relation R with the schema: R(A,B,C,D)R(A, B, C, D)R(A,B,C,D) This relation

contains the following functional dependencies (FDs):

 A → B

 C → D

Step 2: Decompose the Relation

We want to decompose R into two sub-relations:

 R1(A, B)

 R2(C, D)

Step 3: Check for Lossless Decomposition

To check if this decomposition is lossless, we use the following approach:

 Find the common attributes between R1 and R2. Here, there are no common attributes

between R1 and R2.

This means we need to check if the decomposition satisfies the lossless join condition.

 R1 ∩ R2 is the empty set {}.

 In this case, we check if the common attributes in R1 and R2 form a key in R. The

common attribute is empty, so the decomposition is not lossless.

Example of Lossless Decomposition:

Let's consider another example where the decomposition is lossless.

Step 1: Original Relation

Consider a relation R with the schema: R(A,B,C)R(A, B, C)R(A,B,C) This relation has the

following functional dependencies:

 A → B

 B → C

Step 2: Decompose the Relation

We want to decompose R into two sub-relations:

 R1(A, B)

 R2(B, C)

Step 3: Check for Lossless Decomposition

To check for lossless decomposition, look at the common attribute between R1 and R2. In this

case, the common attribute is B.

Now, check if B is a key in the original relation R:

 From A → B, we can deduce that A determines B, so B is not a key.

 From B → C, we can deduce that B determines C, so B determines both C and A.

Thus, B is a key for the original relation R.

Since the common attribute B is a key for the original relation, this decomposition is lossless.

Step 4: Reconstructing the Original Relation

To reconstruct the original relation, you would perform a natural join of the two decomposed

relations: R1(A,B) and R2(B,C)R1(A, B) \ \text{and} \ R2(B, C)R1(A,B) and R2(B,C)

This will result in: R(A,B,C)R(A, B, C)R(A,B,C)

Lossless Decomposition in Normal Forms:

Lossless decomposition is critical in the normalization process, especially when converting a table

into 3NF (Third Normal Form) or BCNF (Boyce-Codd Normal Form). When decomposing a

table during normalization, ensuring losslessness guarantees that no information is lost, and that

data can be reconstructed if needed.

Key Takeaways:

 Lossless decomposition ensures that no information is lost when decomposing a relation

into smaller relations.

24

 A decomposition is lossless if the intersection of the decomposed relations contains enough

attributes to recreate the original relation.

 Decompositions based on keys (such as in 3NF or BCNF) help achieve lossless

decomposition and maintain data integrity.

Dependency-Preserving Decomposition in DBMS
In Database Management Systems (DBMS), dependency-preserving decomposition refers to

a process in which a relation (table) is decomposed into smaller relations (subtables), and all the

original functional dependencies (FDs) are preserved in the decomposed relations. This means that

after decomposition, we can enforce the original functional dependencies in the decomposed

relations without needing to join them back together.

Why Dependency-Preserving Decomposition is Important:

 Simplifies enforcement of constraints: Dependency-preserving decomposition allows us

to enforce constraints on individual relations without needing to perform complex joins.

 Efficiency: Since no additional joins are required to check dependencies, queries and

operations on the database are more efficient.

 Data integrity: By preserving the original functional dependencies, we ensure that the

decomposed relations still uphold the integrity rules of the original relation.

Conditions for Dependency-Preserving Decomposition:

A decomposition is dependency-preserving if, after decomposing a relation R into sub-relations

R1, R2, ..., Rn, the union of the functional dependencies in R1, R2, ..., Rn is equivalent to the set

of functional dependencies in R (i.e., the decomposition preserves all original dependencies).

However, it is important to note that not all decompositions are dependency-preserving.

Sometimes, to achieve a lossless decomposition, we may have to sacrifice dependency

preservation.

Example of Dependency-Preserving Decomposition:

Let's go through an example of a dependency-preserving decomposition.

Step 1: Original Relation

Consider a relation R with the schema: R(A,B,C,D)R(A, B, C, D)R(A,B,C,D) And the following

functional dependencies:

 A → B

 B → C

 A → D

Step 2: Decompose the Relation

We want to decompose the relation R into two sub-relations:

 R1(A, B, C)

 R2(A, D)

Step 3: Check if the Decomposition is Dependency-Preserving

To check if this decomposition is dependency-preserving, we need to see if all the original

functional dependencies are still enforceable within the decomposed relations R1 and R2:

 A → B: This dependency is preserved in R1 because A and B are both present in R1.

 B → C: This dependency is preserved in R1 because B and C are present in R1.

 A → D: This dependency is preserved in R2 because A and D are present in R2.

Thus, the original functional dependencies are all preserved in the decomposed relations.

Therefore, the decomposition is dependency-preserving.

Step 4: Reconstructing the Original Relation

To reconstruct the original relation R, we would perform a natural join on R1 and R2:

R1(A,B,C) and R2(A,D)R1(A, B, C) \ \text{and} \ R2(A, D)R1(A,B,C) and R2(A,D)

25

This would yield: R(A,B,C,D)R(A, B, C, D)R(A,B,C,D)

Non-Dependency-Preserving Decomposition Example:

Step 1: Original Relation

Consider a relation R with the schema: R(A,B,C,D)R(A, B, C, D)R(A,B,C,D) And the following

functional dependencies:

 A → B

 B → C

 A → D

Step 2: Decompose the Relation

Suppose we decompose R into:

 R1(A, B, C)

 R2(B, D)

Step 3: Check if the Decomposition is Dependency-Preserving

Now, let's check if the original functional dependencies are still enforceable in the decomposed

relations:

 A → B: This dependency is preserved in R1 because A and B are both in R1.

 B → C: This dependency is preserved in R1 because B and C are both in R1.

 A → D: This dependency is not preserved in either R1 or R2. A is in R1, but D is in R2,

and there is no way to enforce this dependency directly within the decomposed relations.

This decomposition does not preserve the dependency A → D, so it is not dependency-

preserving.

Dependency-Preserving Decomposition in Normalization:

 In the process of normalization (such as achieving 3NF or BCNF), it is often desirable to

have both lossless and dependency-preserving decompositions.

 BCNF decompositions, in particular, may sometimes result in a lossless but non-

dependency-preserving decomposition. However, when we prioritize both losslessness

and dependency preservation, it can become challenging to achieve both goals

simultaneously.

Trade-off Between Lossless and Dependency-Preserving Decomposition:

 Lossless decomposition: Ensures that no information is lost, and the original relation can

be reconstructed by joining the decomposed relations.

 Dependency-preserving decomposition: Ensures that all functional dependencies can be

enforced directly in the decomposed relations without needing to join them back together.

It is possible to achieve one without the other. For example:

 A decomposition can be lossless but not dependency-preserving (in cases where

dependencies are spread across different decomposed relations).

 A decomposition can be dependency-preserving but not lossless (though this is less

common).

Conclusion:

Dependency-preserving decomposition ensures that all original functional dependencies are

maintained in the decomposed relations, allowing for efficient enforcement of constraints without

the need for joins. It is particularly useful in normalizing databases to reduce redundancy while

maintaining data integrity. However, achieving both losslessness and dependency preservation

in the same decomposition may not always be possible, and trade-offs may be required depending

on the normalization goals.

26

Dependency in DBMS

What are Dependencies in DBMS?

o A dependency is a constraint that governs or defines the relationship between two or more

attributes.

o In a database, it happens when information recorded in the same table uniquely determines

other information stored in the same table.

o This may also be described as a relationship in which knowing the value of one attribute

(or collection of attributes) in the same table tells you the value of another attribute (or set

of attributes).

o It's critical to understand database dependencies since they serve as the foundation for

database normalization.

What Normalization Stands for?

Normalization is a method of organizing data in a database that helps to reduce data redundancy,

insertion, update, and deletion errors. It is the process of assessing relation schemas based on

functional relationships and primary keys.

This allows you to limit the amount of space a database takes up while also ensuring that the data

is kept correctly.

Normalization Need
As previously stated, normalization is used to eliminate data redundancy. It offers a mechanism

for removing the following anomalies from the database and making it more consistent:

A database anomaly is a fault in the database caused by insufficient preparation and redundancy.

o Insertion anomalies occur when we are unable to insert data into a database due to the

absence of particular attributes at the moment of insertion.

o Updation anomalies occur when the same data items with the same values are repeated

but are not related to each other.

o A deletion anomaly happens when deleting one part of the data results in the deletion of

the other necessary information from the database.

Normal Forms

As illustrated in the image below, there are four types of normal forms that are commonly used in

relational databases:

27

1. First Normal Form (1NF):
A relation is in 1NF if all of its attributes are single-valued or if it lacks any multi-valued

or composite attributes, i.e., every attribute is an atomic attribute.

The 1NF is violated if there is a composite or multi-valued attribute. To resolve this, we

can construct a new row for each of the multi-valued attribute values in order to transform

the table into the 1NF.

2. Second Normal Form (2NF):
Normalization of 1NF to 2NF relations entails the removal of incomplete dependencies.

When any non-prime attributes, i.e., qualities that are not part of the candidate key, are not

totally functionally reliant on one of the candidate keys, a partial dependency occurs.

To be in second normal form, a relational table must obey the following rules:

o The table must be presented in the first normal form.

o It must not have any partial dependencies, which means that all non-prime attributes

must be totally functionally dependent on the primary key.

3. Third Normal Form (3NF):
Normalization of 2NF to 3NF relations entails the removal of transitive dependencies.

To be in the third normal form, a relational table must obey the following rules:

o The table should be in second normal form.

o There are no non-prime attributes that are transitively dependent on the primary

key.

o At least one of the following conditions must be met for each functional

dependency X -> Z:

o The table's super key is X.

o Z is a key feature of the table.

4. Boyce-Codd Normal Form (BCNF):
Boyce-Codd Normal Form is a more advanced variant of 3NF since it has more

limitations than 3NF.

To be in Boyce-Codd normal form, a relational table must fulfil the following rules:

o The table must be in the "Third Normal Form".

o For every non-trivial functional dependency X -> Y, X is the table's superkey.

That is, if Y is a prime attribute, X cannot be a non-prime attribute.

Types of Dependencies in DBMS

In DBMS, it has the following types:

o Functional Dependency

o Fully-Functional Dependency

o Transitive Dependency

o Multivalued Dependency

o Partial Dependency

Now, let's get started with Functional Dependency.

Functional Dependencies:

A functional dependency (FD) is a relationship that exists between two attributes in a database,

typically the primary key and additional non-key attributes. Consider it a link between two

qualities of the same relation.

A dependency is denoted by an arrow "→".

28

If Cdetermines Dfunctionally, thenC→D.

Functional dependency, indicated as C→ D, is a relationship between two sets of attributes, C and

D. In this case, C is referred to as the "determinant", and Dis referred to as the "dependent".

Functional Dependency aids in the maintenance of database data quality.

Functional Dependency Rules:

Inference Rules

o Axioms:

A relational database's functional dependencies can be inferred using Armstrong's axioms, a set of

inference principles. Armstrong, William W., created them.

Functional Dependencies Axioms:
1. The reflexive rule states that if D is a subset of C, then D is determined by C., i.e. C→D.

2. The augmentation rule, also known as the partial dependency rule, states that if D is

determined by C, then CZ determines DZ for any Z.Every non-key attribute is required to

be totally dependent on the Primary Key, according to it.

i.e. If C→D, then CZ→DZ for any Z.

3. Transitivity rule states that if D is determined by C and Z is determined by D, then C must

also determine Z., i.e. if C→D and D→Z, then C→Z.

o Decomposition:

It is a rule that stipulates that if a table appears to contain two entities determined by the same

primary key, it should be split into two independent tables.

According to this rule, if C determines D and Z, C also determines D and Z individually.i.e. if

C→DZ then C→D and C→Z.

o Union

It suggests that if two tables are independent yet have the same Primary Key, they should be

combined.It states that C must determine D and Z if C determines D and C determines Z.

i.e. if C→D and C→Z then C→DZ.

Terms:

Dependent: It is shown on the functional dependency diagram's right side.

Determinant: It is shown on the functional dependency Diagram's left side.

Non-normalized table: A table containing redundant data.

Examples

Example 1: Here, we have a table named Student.

<Student>

StuID StuName StuAge

E01 Rose 14

E02 Rolly 13

29

Here, StuName in the preceding table is functionally dependent on StuID since StuName can

only accept one value for the specified value of StuID, i.e. Because a student's name can be

uniquely determined from an ID, StuName can be considered to be dependent on StuID.

1. StuID→StuName

However, the converse assertion (StuName?>StuID) is false because multiple students can have

the same name but have different StuID's.

Example 2: We have a table Employee.

<Employee>

Employee_No E_Name E_Salary Address

1 Dolly 60000 Seoul

2 Flora 48000 BukchonHanok

3 Anni 35000 Seoul

We can Deduce Several Valid Functional Dependencies from the Preceding Table:

In this case, knowing the value of Employee_No allows us to access E_Name, Address, E_Salary,

and so on. As a result, the Address, E Name, and E Salary are all functionally dependent on

Employee No.

o Employee_No→ {E_Name, E_Salary, Address}: Employee _No can decide the values of

fields E_Name, E_Salary, and Address in this case, resulting in a legal Functional

dependence.

o Employee_No→E_Salary, Because Employee_No can determine the entire set of

{E_Name, E_Salary, and Address}, it can also determine its subset E_Salary.

o More valid functional dependents include: Employee_No→name, {Employee_No,

E_Name }→(E_Salary, Address}, and so on.

Here are Some Invalid Functional Dependencies:

o E_Name→E_Salary: This is not an acceptable functional dependencybecause employees

with the same name can have different salaries.

o Address→E_Salary: Different salaries can be given to the employees of the same Address;

for example, E_Salary 60000 and 35000 in the preceding table belong to employees of the

same address, "Seoul"; hence Address→E_Salary is an incorrect functional dependency.

o More invalid functional dependencies include: E_Name→Employee_No, {E_Name,

E_Salary}→Employee_No, and so on.

30

Types of Functional Dependencies

1. Trivial Functional Dependency:

1. A "dependent" in Trivial functional dependency is always a subset of the "determinant".

2. A functional dependency is said to be trivial if the attributes on its right side are a subset

of the attributes on its left side.

3. If D is a subset of C, C→D is referred to as a Trivial Functional Dependency.

Example: Take a look at the Student table below.

<Student>

Roll_No S_Name S_Age

1 John 13

2 Riya 12

3 Giya 15

4 Jolly 16

o {Roll_No, S_ Name} →S_Name is a Trivial functional dependency in this case because

the dependant S_Name is a subset of the determinant {Roll_No, S_Name}.

o { Roll_No } → { Roll_No }, { S_Name } → { S_Name } and { S_Age } → { S_Age } are

also Trivial.

31

2. Non-Trivial Functional Dependency

o It is the inverse of Trivial functional dependence. Formally, a Dependent is a Non-Trivial

functional dependency if it is not a subset of the determinant.

o If D is not a subset of C, C→D is said to have a non-trivial functional dependency. Non-

trivial functional dependency is defined as a functional dependency C→ D where C is a set

of attributes and D is also a set of attributes but not a subset of C.

Example: Consider the Student table below.

<Student>

Roll_No S_Name S_Age

1 John 13

2 Riya 12

3 Giya 15

4 Jolly 16

o Roll_No→S_Name is a non-trivial functional dependency in this case since

S_Name(dependent) is not a subset of Roll_No (determinant).

o Similarly, {Roll_No, Name}→ Age are non-trivial functional dependencies.

3. Multivalued Functional Dependency

o In multivalued functional dependency, attributes in the dependent set are not dependent on

one another.

o For example, C {D, Z}is referred to as a Multivalued functional dependency if there is no

functional dependency between D and Z.

Example: Take a look at the Student table below.

<Student>

Roll_No S_Name S_Age

1 John 13

2 Riya 12

3 Giya 15

4 Jolly 16

o {Roll_No}→ {S_Name, S_Age) is a Multivalued functional dependency in this case

because the "dependent values" S_ Name and S_Ageare not functionally dependent (i.e.

S_Name→S_Ageor S_ Age→S_ Name does not exist).

32

4. Transitive Functional Dependency

o Consider two functional dependencies, C→ D and D→Z; C→Z must exist according to

the transitivity principle. This is referred to as a Transitive Functional dependency.

o In transitive functional dependency, the dependent is dependent on the determinant

indirectly.

Example: Consider the Student table below.

<Student>

Roll_No S_Name S_Department Street_No

1 John AC 12

2 Riya BH 11

3 Giya MV 14

4 Jolly CD 18

o Roll_No→S_Department and S_Department→Street_No are correct here. As a result,

Roll_No→Street_Number is a valid functional dependency, according to the principle of

transitivity.

Benefits of Functional Dependency

o Functional Dependency prevents data duplication. As a result, the same data does not

appear several times in that database.

o It assists you in maintaining the database's data quality.

o It assists you in defining database semantics and constraints.

o It aids you in spotting flawed designs.

o It aids you in locating database design information.

o The Normalization method begins with identifying the potential keys in the relation. It is

impossible to locate candidate keys and normalize the database without functional

dependencies.

Fully Functional Dependency

A functional dependency C→D,afully functional dependency is one in which, if any attribute x

from C is removed, the "dependency" no longer exists.

If D is "fullyfunctional dependent" on C, it is not functionally dependent on any of the valid subsets

of C.

i.e.Attribute Zin the relation CDE->Zis "fully functionally dependent"on CDEand not on any

appropriate subset of CDE. That is, CDEsubsets such as CD, DE, C, D, and so on cannot determine

Z.

Also;

o Full Functional Dependency corresponds to the Second Normal Form normalization

standard.

o Functional dependency improves the data quality of our database.

o In this dependency, the non-prime property is functionally reliant on the candidate key.

o The full dependency on database attributes helps to assure data integrity and eliminate data

abnormalities.

Example: Here, we have a table named Supply.

33

<Supply>

Seller_Id Product_id T_price

1 1 530

2 1 535

1 2 100

2 2 101

3 1 342

According to the Table, neither Seller_id nor Product_idcan uniquely determine the price, but

both Seller_idandProduct_idcombined can.

As a result, we can say that T_price is "fully functionally dependent"

on Seller_id nor Product_id.

This outlines and demonstrates our fully functional dependency:

1. { Seller_id , Product_id } →T_Price

Partial Functional Dependency

A functional dependency C → D, If the dependency doeshold after removing any attribute x from

C, then it is said to be a Partial Functional Dependency.

A functional dependency C→Y, If D is functionally dependent on C and may be determined by

any appropriate subset of C, there is a partial dependency.

i.e. We have an CF->D, C->E, and E->D relation. Now, let us compute the closure of {C+}=CED.

In this case, C can determine D on its own, implying that D is partially dependent on CF.

Also;
o In partial functional dependency, the non-prime attribute is functionally dependent on a

component of a candidate key.

o The normalizing standard of the Second Normal Form does not apply to Partial Functional

Dependency. 2NF, on the other hand, eliminates Partial Dependency.

o Partially dependent data does not improve data quality. It must be removed before

normalization in the second normal form may occur.

Cause of Partial Dependency:
Partial dependency happens when a non-prime attribute is functionally dependent on a portion of

the given candidate key, as we saw in the preceding section.

In other words, partial dependency arises when an attribute in a table is dependent on only a portion

of the primary key rather than the entire key.

Example: We have a table called Student here.

34

<Student>

Roll_No S_Name S_Course

1 John DBMS

2 Riya C++

3 Giya Java

4 Jolly C

We can see that the attributes S_Name and Roll_No can both uniquely identify a S_Course. As a

result, we might argue that the relationship is partly dependent.

Transitive Dependency

A transitive dependence is any non-prime attribute other than the candidate key that is reliant on

another non-prime attribute that is wholly dependent on the candidate key.

Transitive Dependency occurs when an indirect interaction results in functional dependency. As a

result, if C→ D and D ->Z are true, then C ->Z is a transitive dependency.

Transitive dependency causes deletion, update, and insertion errors in the database and is regarded

as poor database design.

To reach 3NF, one must first eliminate Transitive Dependency.

Note:

Only when two Functional Dependencies establish an indirect functional dependency can it be

transitive. As an example,

When the following functional dependencies hold true, C →E is a transitive dependency:

o C ->D

o D does not imply C

o C→E

Only in the case of some given relation of three or more attributes can transitive dependency occur

effortlessly. Such a dependency aids us in normalizing the database in its 3rd Normal Form (3NF).

Example: Here, we have a table Telecast_show.

<Telecast_show>

Id_show Id_telecast Type_telecast Cost_CD

F01 S01 Romantic 30

F02 S02 Thriller 50

F03 S03 Comedy 20

(Because of a transitive functional relationship, the table above is not in its 3NF.)

Id_show→Id_telecast

Id_telecast→Type_telecast

35

As a result, the following functional dependency is transitive.

1. Id_show→Type_telecast

Avoiding Transitive Functional Dependency

According to the preceding statement, the relation <Telecast> violates the 3NF (3rd Normal Form).

To address this violation, we must split the tables in order to remove the transitive functional

relationship.

<show>

Id_show Id_telecast Cost_CD

F01 S01 30

F02 S02 50

F03 S03 20

<telecast>

Id_telecast Type_telecast

S09 Thriller

S05 Romantic

S09 Comedy

The preceding relationship is now in the Third Normal Form (3NF) of Normalization.

Multivalued Dependency

The termMultivalued Dependency refers to having several rows in a particular table. As a result,

it implies that there are multiple other rows in the same table. A multivalued dependency would

thus preclude the 4NF. Any multivalued dependency would involve at least three table attributes.

When two separate attributes in a given table are independent of each other, multivalued

dependency occurs. However, both of these are dependent on a third factor. At least two of the

attributes are reliant on the third attribute in the multivalued dependence. This is why it always

includes at least three of the qualities.

Example: Here we have a table Car.

<Car>

36

Model_car Month_manu Col_or

S2001 Jan Yellow

S2002 Feb Red

S2003 March Yellow

S2004 April Red

S2005 May Yellow

S2006 June Red

In this scenario, the columns Col_or and Month_manu are both dependent on Model-car but

independently of one another. As a result, we can refer to both of these columns as multivalued.

Thus, they are dependent on Model_car. Here is a diagram of the dependencies we covered earlier:

1. Model_car → →Month_manu

2. Model_car → → Col_or

Why Do We Use Multivalued Dependency in DBMS?

When we face these two different ways, we always employ multivalued conditions:

o When we wish to test the relationships or determine whether they are legal under certain

arrangements of practical and multivalued dependencies.

o When we want to know what restrictions exist on the arrangement of legal relationships;

as a result, we will only be concerned with the relationships that fulfil a specific

arrangement of practical and multivalued dependencies.

Occurrence:

o When two qualities in a table are independent of each other yet reliant on a third property,

this is referred to as multivalued dependence.

o Because multivalued Dependency requires a minimum of two variables that are

independent of each other in order to be dependent on the third variable, the minimum

number of variables necessary is two.

DBMS Dependency Conditions for Multivalued Dependency:

If all of the following conditions are met, we can state that multivalued dependency exists.

If any attribute 'C' has many dependencies on 'D,' for any relation R, for all the pair data values in

table row R1 and table row R2, such that the relation

1. R1[C]=R2[C]

exists, and there is a relationship between row R3 and row R4 in the table such that

37

1. R1[C] = R2[C] = R3[C] = R4[C]

2. R1[D] = R3[D], R2[D] = R4[D]

Then we can assert the existence of Multivalued Dependency (MVD).

That is, in Rows R1, R2, R3, and R4,

R1[C], R2[C], R3[C], and R4[C] must all have the same value.

The value of R1[D] should be equal to R3[D], and the value of R2[D] should be equal to R4[D].

Example: Here, we have a table Course.

<Course>

Row_ Name_ Course_work_ Hobby_

R1 Ronit Java Dancing

R2 Ronit Python Singing

R3 Ronit Java Dancing

R4 Ronit Python Singing

Because we have distinct values of Course_work_ and Hobby_ for the same value of Name

"Ronit," we have multivalued dependents on Name_.

Verificationof <Course> table.

Let us now examine the condition of MVD(Multivalued Dependency) in our table.

Condition 1:
R1[C] = R2[C] = R3[C] = R4[C]

From the table;

R1[C] = R2[C] = R3[C] = R4[C] = 'Ronit'.

As a result, condition 1 appears to be met.

Condition 2:
R1[D] = R3[D], R2[D] = R4[D]

From the table;

R1[D] = R3[D] = 'Java', R2[D] = R4[D]= 'Python'.

As a result, condition 2 appears to be met as well.

Condition 3:

R1[e] = R4[e], R2[e] = R3[e]

We can draw a conclusion from the table.

R1[E] = R4[E] = 'Dancing', R2[E] = R3[E] = 'Singing'.

As a result, condition 3 is likewise satisfied, indicating that MVD occurs in the provided situation.

We have now;

1. C →→ D

And from the table, we obtained the following;

Name_ →→Course_work_

And for C →→ E, we have

Name_ → Hobby_

Finally, in the given table, we can conclude with the conditional relation as

1. Name_ →→Course_work_

2. Name_ →→ Hobby_

38

Conclusion:

o The functional dependency of a relation defines how its attributes are related to one

another. It aids in the preservation of data quality in the database. It is represented by an

arrow "→".

o C→D represents the functional dependency of C on D. In 1974, William Armstrong

proposed a few axioms or laws about functional dependency. They have

The Reflexivity Rule, Augmentation Rule, and Transitivity Rule.

o Functional dependencies are classified into four categories. Functional dependency can be

classified as trivial, non-trivial, multivalued, or transitive.

o Functional dependencies have various benefits, including keeping the database design

clean, clarifying the meaning and limits of the databases, and eliminating data redundancy.

o In a database, a transitive dependency is an indirect relationship between items in the same

table that results in a functional dependency.

o A transitive dependency, by definition, requires three or more properties.

o To meet the "Third Normal Form (3NF) " normalization standard, any transitive

dependency must be removed.

o Transitive dependency causes deletion, update, and insertion errors in the database and is

regarded as poor database design.

o When the values of two independent attributes, say D and E, are determined by the third

attribute C, multivalued dependence exists.

o The symbol for Multivalued Dependency is 'C--> D'.

o As a result, we can state that in order for a multivalued dependency to exist in a relation R.

o Two components of a single property, say B and C, should be mutually independent of

each other.

o For two tuples of R, say C and D, the full attributes of C may have distinct values for

component D.

o Similarly, For two tuples of R, say C and E, the component E may have distinct values for

the full attributes of C.

o When an attribute in a database depends solely on a portion of the candidate key rather

than the entire key, this is referred to as partial functional dependence.i.e. "Prime → Non-

Prime".

o Normal forms are used to eliminate redundancy and minimize database storage.

o In 1NF, we check the atomicity of a relation's characteristics.

o We look for partial dependencies in a relation using 2NF.

o We look for transitive dependencies in a relation using 3NF.

o BCNF looks for superkeys in the LHS of all functional dependents.

	Types of Dependencies in DBMS
	Conclusion
	Example of Deletion Anomaly:
	Consequence:
	Solution:
	Example of Updation Anomaly:
	Scenario: Updation Anomaly
	Solution: (1)
	Example of Insertion Anomaly:
	Scenario: Insertion Anomaly
	Why This Happens:
	Solution: (2)
	Example of a Table Not in 1NF:
	Converting the Table to 1NF:
	Why This is Now in 1NF:
	Summary:
	Example of a Table Not in 2NF:
	Why This Table Is Not in 2NF:
	Converting the Table to 2NF:
	Why This Table Is Now in 2NF:
	Summary: (1)
	Example of a Table Not in 3NF:
	Why This Table is Not in 3NF:
	Converting the Table to 3NF:
	Why This Table is Now in 3NF:
	Summary: (2)
	Example of a Table Not in BCNF:
	Functional Dependencies:
	Why This Table is Not in BCNF:
	Converting the Table to BCNF:
	Why This is Now in BCNF:
	Summary: (3)
	Multi-Valued Dependencies (MVD) and Fourth Normal Form (4NF)
	What is a Multi-Valued Dependency (MVD)?
	Example of a Table Not in 4NF:
	Functional Dependencies: (1)
	Why This Table is Not in 4NF:
	Converting the Table to 4NF:
	Why These Tables are Now in 4NF:
	Summary: (4)
	Join Dependencies and Fifth Normal Form (5NF)
	What is a Join Dependency?
	Example of a Table Not in 5NF:
	Functional Dependencies: (2)
	Why This Table is Not in 5NF:
	Converting the Table to 5NF:
	Why This is Now in 5NF:
	Summary: (5)
	Decomposition Rules and Example
	Decomposition Rules:
	Example of Decomposition:
	Step 1: Identify Functional Dependencies
	Step 2: Analyze Violations of Normal Forms
	Step 3: Decompose into 3NF (or BCNF) Using Decomposition Rules
	1. Student_Courses Table (Removes partial dependency):
	2. Course_Instructors Table (Removes transitive dependency):
	3. Instructor Table (Store information about instructors separately):

	Step 4: Verify Decomposition
	Summary of the Decomposed Tables:
	Conclusion:
	Formal Definition of Lossless Decomposition:
	Conditions for Lossless Decomposition:
	Example of Lossless Decomposition:
	Step 1: Original Relation
	Step 2: Decompose the Relation
	Step 3: Check for Lossless Decomposition
	Example of Lossless Decomposition:
	Step 1: Original Relation (1)
	Step 2: Decompose the Relation (1)
	Step 3: Check for Lossless Decomposition (1)
	Step 4: Reconstructing the Original Relation

	Lossless Decomposition in Normal Forms:
	Key Takeaways:
	Dependency-Preserving Decomposition in DBMS
	Why Dependency-Preserving Decomposition is Important:
	Conditions for Dependency-Preserving Decomposition:
	Example of Dependency-Preserving Decomposition:
	Step 1: Original Relation
	Step 2: Decompose the Relation
	Step 3: Check if the Decomposition is Dependency-Preserving
	Step 4: Reconstructing the Original Relation

	Non-Dependency-Preserving Decomposition Example:
	Step 1: Original Relation
	Step 2: Decompose the Relation
	Step 3: Check if the Decomposition is Dependency-Preserving

	Dependency-Preserving Decomposition in Normalization:
	Trade-off Between Lossless and Dependency-Preserving Decomposition:
	Conclusion: (1)
	Dependency in DBMS
	What are Dependencies in DBMS?
	What Normalization Stands for?
	Normal Forms
	Types of Dependencies in DBMS
	Functional Dependencies:
	Functional Dependency Rules:
	Terms:
	Types of Functional Dependencies
	1. Trivial Functional Dependency:
	2. Non-Trivial Functional Dependency
	3. Multivalued Functional Dependency
	4. Transitive Functional Dependency
	Benefits of Functional Dependency

	Fully Functional Dependency
	Partial Functional Dependency
	Transitive Dependency
	Note:
	Avoiding Transitive Functional Dependency

	Multivalued Dependency
	Why Do We Use Multivalued Dependency in DBMS?
	Occurrence:

	Conclusion:

