
1 / 18

SNS COLLEGE OF TECHNOLOGY
COIMBATORE

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade

Approved by AICTE New Delhi & affiliated to the Anna University, Chennai

DEPARTMENT OF MCA

Course Name : 19CAT609 - DATA BASE MANAGEMENT SYSTEM

Class : I Year / II Semester

Unit V - COLUMN ORIENTED DATABASE

Topic III – Indexing and ordering datasets

1

2 / 18

MongoDB - Indexing

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

Indexes support the efficient resolution of queries. Without indexes,
MongoDB must scan every document of a collection to select those
documents that match the query statement. This scan is highly inefficient and
require MongoDB to process a large volume of data.

Indexes are special data structures, that store a small portion of the data set in
an easy-to-traverse form. The index stores the value of a specific field or set of
fields, ordered by the value of the field as specified in the index.

December 30, 2024

2

3 / 18

The createIndex() Method

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

To create an index, you need to use createIndex() method of MongoDB.
Syntax
The basic syntax of createIndex() method is as follows().
>db.COLLECTION_NAME.createIndex({KEY:1})
Here key is the name of the field on which you want to create index and 1 is for
ascending order. To create index in descending order you need to use -1.
Example
>db.mycol.createIndex({"title":1})
{ "createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1 } >
In createIndex() method you can pass multiple fields, to create index on multiple
fields.’
>db.mycol.createIndex({"title":1,"description":-1}) >

December 30, 2024

3

4 / 18

The createIndex() Method

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

Parameter Type Description

background Boolean

Builds the index in the background so that
building an index does not block other
database activities. Specify true to build in
the background. The default value is false.

unique Boolean

Creates a unique index so that the collection
will not accept insertion of documents where
the index key or keys match an existing value
in the index. Specify true to create a unique
index. The default value is false.

name string

The name of the index. If unspecified,
MongoDB generates an index name by
concatenating the names of the indexed fields
and the sort order.

December 30, 2024

4

5 / 18

The createIndex() Method

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

Parameter Type Description

sparse Boolean
If true, the index only references documents with the specified
field. These indexes use less space but behave differently in
some situations (particularly sorts). The default value is false.

expireAfterSeconds integer
Specifies a value, in seconds, as a TTL to control how long
MongoDB retains documents in this collection.

weights document
The weight is a number ranging from 1 to 99,999 and denotes
the significance of the field relative to the other indexed fields
in terms of the score.

default_language string
For a text index, the language that determines the list of stop
words and the rules for the stemmer and tokenizer. The default
value is English.

language_override string
For a text index, specify the name of the field in the document
that contains, the language to override the default language.
The default value is language.

December 30, 2024

5

6 / 18

The dropIndex() method

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

•The basic syntax of DropIndex() method is as follows().
•>db.COLLECTION_NAME.dropIndex({KEY:1}) Here key is the name of the file
on which you want to create index and 1 is for ascending order. To create
index in descending order you need to use -1.
•Example

db.mycol.dropIndex({"title":1})
{
"ok" : 0,

"errmsg" : "can't find index with key: { title: 1.0 }",
"code" : 27,
"codeName" : "IndexNotFound" }

December 30, 2024

6

7 / 18

The dropIndexes() method

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

The dropIndexes() method
This method deletes multiple (specified) indexes on a collection.
Syntax
The basic syntax of DropIndexes() method is as follows() −
>db.COLLECTION_NAME.dropIndexes()
Example
Assume we have created 2 indexes in the named mycol collection as shown
below −
db.mycol.createIndex({"title":1,"description":-1})Following example
removes the above created indexes of mycol
>db.mycol.dropIndexes({"title":1,"description":-1})
{
"nIndexesWas" : 2,
"ok" : 1 } >

December 30, 2024

7

8 / 18

The getIndexes() method

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

This method returns the description of all the indexes int the collection.
Syntax
Following is the basic syntax od the getIndexes() method −
db.COLLECTION_NAME.getIndexes() Example
Assume we have created 2 indexes in the named mycol collection as shown
below
db.mycol.createIndex({"title":1,"description":-1})

December 30, 2024

8

9 / 18

The getIndexes() method

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

Following example retrieves all the indexes in the collection mycol
db.mycol.getIndexes()
[{
"v" : 2,
"key" : { "_id" : 1 },
"name" : "_id_",

"ns" : "test.mycol"
},
{

"v" : 2,
"key" : { "title" : 1, "description" : -1 },
"name" : "title_1_description_-1",

"ns" : "test.mycol"
}
] >

December 30, 2024

9

10 / 18

MongoDB - Indexing Limitations

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

Extra Overhead
Every index occupies some space as well as causes an overhead on each
insert, update and delete. So if you rarely use your collection for read
operations, it makes sense not to use indexes.

RAM Usage
Since indexes are stored in RAM, you should make sure that the total size of
the index does not exceed the RAM limit. If the total size increases the RAM
size, it will start deleting some indexes, causing performance loss.

December 30, 2024

10

11 / 18

Query Limitations

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

Indexing can't be used in queries which use −
Regular expressions or negation operators like $nin, $not, etc.
Arithmetic operators like $mod, etc.
$where clause

Hence, it is always advisable to check the index usage for your queries.

Index Key Limits
Starting from version 2.6, MongoDB will not create an index if the value of
existing index field exceeds the index key limit.

December 30, 2024

11

12 / 18

Query Limitations

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

Inserting Documents Exceeding Index Key Limit

MongoDB will not insert any document into an indexed collection if the
indexed field value of this document exceeds the index key limit. Same is the
case with mongorestore and mongoimport utilities.

Maximum Ranges

A collection cannot have more than 64 indexes.
The length of the index name cannot be longer than 125 characters.
A compound index can have maximum 31 fields indexed.

December 30, 2024

12

13 / 18

MongoDB - Covered Queries

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

What is a Covered Query?
As per the official MongoDB documentation, a covered query is a query in
which −
All the fields in the query are part of an index.
All the fields returned in the query are in the same index.
Since all the fields present in the query are part of an index, MongoDB
matches the query conditions and returns the result using the same index
without actually looking inside the documents. Since indexes are present in
RAM, fetching data from indexes is much faster as compared to fetching data
by scanning documents.

December 30, 2024

13

14 / 18

MongoDB - Covered Queries

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

Using Covered Queries
To test covered queries, consider the following document in the users collection

{
"_id": ObjectId("53402597d852426020000003"),
"contact": "987654321", "dob": "01-01-1991",
"gender": "M",
"name": "Tom Benzamin",
"user_name": "tombenzamin“
}

December 30, 2024

14

15 / 18

MongoDB - Covered Queries

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

We will first create a compound index for the users collection on the
fields gender and user_name using the following query

>db.users.createIndex({gender:1,user_name:1})
{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1
}
Now, this index will cover the following query
>db.users.find({gender:"M"},
{user_name:1,_id:0})
{ "user_name" : "tombenzamin" }

December 30, 2024

15

16 / 18

MongoDB - Covered Queries

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

That is to say that for the above query, MongoDB would not go looking into database
documents. Instead it would fetch the required data from indexed data which is very
fast.
Since our index does not include _id field, we have explicitly excluded it from result set
of our query, as MongoDB by default returns _id field in every query. So the following
query would not have been covered inside the index created above

>db.users.find({gender:"M"},
{user_name:1})
{ "_id" : ObjectId("53402597d852426020000003"),
"user_name" : "tombenzamin" }

Lastly, remember that an index cannot cover a query if −
Any of the indexed fields is an array
Any of the indexed fields is a subdocument

December 30, 2024

16

17 / 18

Reference

1. https://www.tutorialspoint.com/mongodb/mongodb_indexing.htm
2. https://docs.mongodb.com/manual/indexes/
3. https://www.tutorialspoint.com/mongodb/mongodb_covered_queries.htm

Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCTDecember 30, 2024

17

https://docs.mongodb.com/manual/indexes/

18 / 18Topic III – Indexing and ordering datasets/Yuvarani.E/MCA/SNSCT

THANK YOU

December 30, 2024

18

