
UNIT IV

1. What is PL/SQL?
PL/SQL refers to Procedural Language/Structured Query Language. It is a programming
language extension of SQL that allows you to write procedural code, such as loops, conditional
statements, exception handling, and SQL statements. PL/SQL is mainly used for developing
database applications and stored procedures within Oracle Database.
2. Compare SQL and PL/SQL.
SQL is a domain-specific language to manage and manipulate relational databases. It primarily
deals with querying, inserting, updating, and deleting data in a database. On the other hand,
PL/SQL is a procedural language that extends SQL by adding programming constructs like
variables, loops, and exception handling. PL/SQL is used for writing stored procedures,
functions, and triggers, allowing for more complex and reusable database logic.
3. Do you know the basic structure of PL/SQL?
Yes, the basic structure of a PL/SQL block includes:
 Declaration section: Where you define variables, constants, and cursors.
 Execution section: Where you write the actual PL/SQL code, including SQL statements and

procedural logic.
 Exception handling section: Where you handle errors and exceptions that may occur during

execution.
4. What Is a Trigger? How Do You Use It?
A trigger is a database object in PL/SQL that automatically executes actions in response to
specific events, such as insertions, updates, or data deletions in a table. Triggers are typically
used to enforce business rules, maintain data integrity, and automate tasks. You create and
define triggers using PL/SQL code and attach them to database tables.
5. What data types does pl/SQL have?
PL/SQL supports various data types, including:
 Scalar data types like VARCHAR2, NUMBER, DATE, and BOOLEAN.
 Composite data types like RECORD and TABLE.
 Reference data types like REF CURSOR and PL/SQL TABLE.
6. Explain the PL/SQL compilation process.
The PL/SQL compilation process involves:
 Parsing: The PL/SQL code is checked for syntax errors.
 Compilation: The code is converted into a format the Oracle Database can execute.
 Storage: The compiled code is stored in the database.
 Execution: When the PL/SQL code is called, it is executed by the database engine.
7. Tell me what a package consists of.
A PL/SQL package contains related procedures, functions, variables, and other PL/SQL
constructs. It consists of two main parts:
 Package Specification: This defines the public interface of the package, including procedures,

functions, and global variables that other programs can access.
 Package Body: This contains the actual implementation of the functions and procedures

defined in the specification.

https://www.simplilearn.com/tutorials/sql-tutorial
https://www.simplilearn.com/tutorials/sql-tutorial/triggers

8. What are the benefits of using PL/SQL packages?
Using PL/SQL packages offers several benefits, including:
 Encapsulation: You can encapsulate related code and data within a package, promoting

modular and organized code.
 Reusability: Packages allow you to reuse code across multiple programs and reduce

redundancy.
 Information Hiding: You can hide implementation details by exposing only the necessary

interfaces in the package specification.
 Improved Performance: Packages are precompiled and stored in the database, which can

enhance performance.
9. Do you understand the meaning of exception handling?
Yes, exception handling in PL/SQL is the process of handling errors or exceptional conditions
that may occur during program execution. It allows you to gracefully handle errors by specifying
actions to take when a particular exception occurs, such as logging the error, rolling back
transactions, or raising custom exceptions.
10. Give me some examples of predefined exceptions.
Predefined exceptions in PL/SQL include:
 NO_DATA_FOUND: Raised when a SELECT statement returns no rows.
 TOO_MANY_ROWS: Raised when a SELECT INTO statement retrieves multiple rows.
 DUP_VAL_ON_INDEX: Raised when attempting to insert a duplicate value into a specific

index.
 ZERO_DIVIDE: Raised when dividing by zero.
11. What do you understand by PL/SQL cursors?
PL/SQL cursors retrieve and manipulate data from a result set. They can be either explicit or
implicit. The database automatically creates implicit cursors for DML statements (e.g., SELECT
INTO), while the programmer defines and uses explicit cursors. Cursors help iterate through
query results and process data row by row.
12. When do we use triggers?
Triggers are used when you want to automate actions or enforce rules based on changes in the
database. Common use cases for triggers include auditing changes, maintaining data integrity,
and implementing business rules.
13. What is a PL/SQL block?
A PL/SQL block is a self-contained unit of code that can include declarations, executable
statements, and exception handlers. It is the fundamental structure for writing PL/SQL
programs, procedures, functions, and anonymous blocks.
14. Name the differences between syntax and runtime errors.
 Syntax Error: These errors occur during compilation and are related to incorrect PL/SQL

language syntax. They prevent the code from compiling successfully.
 Runtime Error: These errors occur during program execution and are caused by issues such

as division by zero, data type mismatches, or other exceptional conditions. They can be
handled with exception handling.

15. What are COMMIT, ROLLBACK, and SAVEPOINT?

 COMMIT: The SQL statement known as COMMIT is utilized to persistently store all
modifications carried out within the ongoing transaction in the database, signifying the
successful conclusion of said transaction.

 ROLLBACK: ROLLBACK in SQL is a command employed to reverse all modifications executed
during the ongoing transaction and revert the database to its prior state.

 SAVEPOINT: SAVEPOINT sets a point within a transaction to which you can later roll back if
needed. It allows you to undo parts of a transaction selectively.

1. What is SQL?

SQL (Structured Query Language) is a programming language used to manipulate and
manage data in relational databases. SQL is used to communicate and connect with a
database to create, modify, retrieve, and delete data.
Some everyday tasks performed using SQL include creating tables and views, inserting
and updating data, selecting specific data from tables, and deleting data from tables.
2. What is a database?

A database is an organized collection of structured information or data, typically stored
electronically in a computer system. It allows users to store, manage, retrieve, and
update data efficiently through database management systems (DBMS).
3. What is a primary key, and why is it important in a database?

A primary key is a crucial component of a Database as it serves as a unique identifier in
a table for each record. The primary key enables efficient data retrieval and
manipulation while ensuring data integrity by preventing duplicate entries.
Using a primary key, a database management system can quickly locate and retrieve
data from a table without scanning the entire table. This makes data retrieval more
efficient, especially in large databases with many records. Additionally, primary keys
allow for the easy creation of relationships between tables, simplifying complex queries
and making database maintenance easier.
4. What is a foreign key, and how is it different from a primary key?
A foreign key is a database constraint that establishes a link between two tables in a
relational database. It is used to maintain referential integrity. It is a field or set of fields
in one table that also refers to the primary key of another table. It differs from a primary
key in that it does not have to be unique and can be used to establish relationships
between tables.
5. What is the difference between a LEFT JOIN and a RIGHT JOIN in SQL?
In SQL, a LEFT JOIN and a RIGHT JOIN are both types of outer join that can be used
to combine data from two or more tables. The difference between them lies in which
table's data is preserved if there is no matching data in the other table.
 In a LEFT JOIN, all the rows from the table on the left-hand side of the JOIN

keyword (the "left table") are included in the result set, even if there is no matching
data in the table on the right-hand side (the "right table").

 In the Right JOIN, all the rows from the table on the right-hand side of the JOIN
keyword (the "right table") are included In the result set, even if there is no
matching data in the left table.

In summary, the difference between a LEFT JOIN and a RIGHT JOIN is the table
whose data is preserved when there is no match in the other table.
6. How would you retrieve all the records from a " customers " table in SQL?

https://www.naukri.com/code360/library/what-is-database

Ans: To retrieve all the records from a table called "customers" in SQL, you would use
the following query:
SELECT * FROM customers;

7. What is a subquery, and how is it used in SQL?

A subquery is a query that is embedded within another query. It retrieves data used in
the main query as a filter or a condition.
Syntax:
SELECT column1, column2

FROM table1

WHERE column3 IN (SELECT column3 FROM table2 WHERE condition);

8. What is the difference between SQL's WHERE and HAVING clauses?
In SQL, the WHERE clause is used to filter rows based on a condition on a column,
while the HAVING clause is used to filter groups based on an aggregate function.

The WHERE clause is applied before any grouping takes place and filters individual
rows based on a condition. On the other hand, the HAVING clause is applied after the
grouping and filter groups based on the results of aggregate functions such as COUNT,
SUM, AVG, etc.
9. What is the difference between a function and a stored procedure in SQL?
In SQL, a function returns a value, while a stored procedure does not necessarily return
a value and may execute a series of operations or tasks. Functions can be used as part
of a SQL statement or expression to return a value. In contrast, stored procedures can
be used to encapsulate a series of SQL statements and can be executed as a single
unit. Additionally, functions can be used within stored procedures, but stored
procedures cannot be used within functions.
10. Write a SQL query to find the second-highest salary from an employee table.

Assuming we have the following "employees" table:
CREATE TABLE employees (

 id INT PRIMARY KEY,

 name VARCHAR(255) NOT NULL,

 salary INT

);

INSERT INTO employees (id, name, salary) VALUES (1, 'Sangeeta', 100000);

INSERT INTO employees (id, name, salary) VALUES (2, 'Ranjita', 150000);

INSERT INTO employees (id, name, salary) VALUES (3, 'Anita', 70000);

INSERT INTO employees (id, name, salary) VALUES (4, 'Sunita', 50000);

INSERT INTO employees (id, name, salary) VALUES (5, 'Anjeeta', 90000);

SELECT MAX(salary) as second_highest_salary

FROM employees

WHERE salary < (SELECT MAX(salary) FROM employees)

Output:

11. What is the purpose of an index in SQL, and how does it work?

An index is used to improve the performance of queries by allowing for faster data
retrieval. It creates a separate data structure that stores the values of one or more
columns and allows faster access to the data based on those values.
12. What is the difference between NOSQL and SQL?

SQL NOSQL

It is a relational data model. It is a non-relational data model.

Vertical scaling is more common. Supports horizontal scaling.

Handles structured data. Handles large and unstructured data.

Fixed schema structure. Flexible structure.

Schema-based. Schema-less.

13. Write a SQL query to find the names of employees who have not been
assigned to any project.

We have created an Employee table and a Project table
CREATE TABLE employees (

 employee_id INT PRIMARY KEY,

 name VARCHAR(50)

);

INSERT INTO employees (employee_id, name)

VALUES

 (1, 'Raghav'),

 (2, 'Raashi'),

 (3, 'Rohan'),

 (4, 'Mohan');

CREATE TABLE projects (

 project_id INT PRIMARY KEY,

 name VARCHAR(50),

 employee_id INT,

 FOREIGN KEY (employee_id) REFERENCES employees(employee_id)

);

INSERT INTO projects (project_id, name, employee_id)

VALUES

 (1, 'Project A', 1),

 (2, 'Project B', 2),

 (3, 'Project C', 1),

 (4, 'Project D', 3);

SELECT employees.name

FROM employees

LEFT JOIN projects

ON employees.employee_id = projects.employee_id

WHERE projects.employee_id IS NULL;

Output:

Explanation:

This is because the employee Mohan has not been assigned to any project, as there
are no corresponding rows in the "projects" table with their respective employee IDs.
The rest have been assigned to at least one project, so they are not included in the
output.
14. In the Student table, the marks column contains a list of values separated by
commas. How can you determine the number of values in this comma-separated
list?

CREATE TABLE Student (

 id INT NOT NULL,

 name VARCHAR(50) NOT NULL,

 marks VARCHAR(255) NOT NULL,

 PRIMARY KEY (id)

);

INSERT INTO Student (id, name, marks)

VALUES (1, 'Rohit', '87,92,76,89');

SELECT id, name, marks, LENGTH(marks) - LENGTH(REPLACE(marks, ',', '')) + 1 AS num_

marks

FROM Student

WHERE id = 1;

Output:

15. State the difference between cross-join and natural join.

Features CROSS JOIN NATURAL JOIN

Definition

Returns the Cartesian product of the two

tables, meaning every row from the first

table is combined with every row from

the second table.

Joins two tables based on columns

with the same name, producing a

result set with only one column for

each pair of same-named columns.

Syntax
SELECT * FROM table1 CROSS JOIN

table2;

SELECT * FROM table1 NATURAL JOIN

table2;

Join

Condition

Joins every row of the first table to every

row of the second table.

Joins the two tables based on columns

with the same name.

Resulting

Rows

Total rows in table1 multiplied by total

rows in table2.

Rows where the values in columns with

the same name are equal.

Performance
It can be slow for large tables, generates

Cartesian product.

More efficient than CROSS JOIN but

may require specifying columns

explicitly.

Usage

Used when no columns exist to join

tables or when you want all possible

combinations of rows from the two

tables.

Used when two tables have at least

one column with the same name, and

you want to join them based on that

column.

16. List the different types of relationships in SQL.

In SQL, there are four main types of relationships:

 One-to-One (1:1) Relationship: In this type of relationship, each record in the first

table is associated with only one record in the second table, and vice versa. This is
typically used when the two tables have a common attribute or key, and the second
table contains additional information about the first table.

 One-to-Many (1:N) Relationship: In this type of relationship, each record in the

first table can be associated with multiple records in the second table, but each
record in the second table is associated with only one record in the first table. This
is used when one record in the first table can have multiple related records in the
second table.

 Many-to-One (N:1) Relationship: This is the inverse of the one-to-many

relationship. In this type of relationship, each record in the second table can be
associated with multiple records in the first table, but each record in the first table is
associated with only one record in the second table. This is used when multiple
records in the second table are related to one record in the first table.

 Many-to-Many (N:N) Relationship: In this type of relationship, each record in the

first table can be associated with multiple records in the second table and vice
versa. This requires the use of an intermediary table, often called a junction table,
which contains foreign keys to both the first and second tables. This is used when
multiple records in each table can be related to multiple records in the other table.

17. What are Tables and Fields?
In a relational database, a table is a collection of data organized in rows and columns.
Tables are used to store and manage data in a structured way, with each row
representing a unique record and each column representing specific information about
the record. Tables are often named according to the type of data they contain, such as
"customers", "orders", or "employees".
A field, also known as a column or an attribute, is a single information stored in a table.
Each field is named and has a specific data type, such as text, number, date, or
Boolean, that determines the type of data that can be stored in the field. For example, a
"customers" table might have fields for the customer's name, address, phone number,
and email address.

Fields can also have other properties, such as a maximum length or a default value,
that define how the data is stored and how it can be used. In addition, fields can be
used to define relationships between tables by referencing the primary key of another
table or by creating foreign keys that link related records across different tables.

Tables Fields

Tables Fields

customer's customer_id, name, email, phone, and address.

orders order_id, customer_id, order_date, total_amount.

products product_id, name, description, price, quantity.

employees employee_id, first_name, last_name, job_title, hire_date.

Together, tables and fields form the basic building blocks of a relational database,
providing a flexible and powerful way to store, manage, and query large amounts of
data in a structured and organized way.
18. What is the difference between the SQL statements DELETE and TRUNCATE?

Statement DELETE TRUNCATE

Syntax
DELETE FROM table_name WHERE

condition;
TRUNCATE TABLE table_name;

Functionality
Deletes specific rows that match

the WHERE condition.
Removes all rows from the table.

Auto-

increment

Does not reset auto-increment

values.

Resets auto-increment values to their

starting value.

Transaction
It can be rolled back within a

transaction.
It cannot be rolled back within a transaction.

Logging
Logs, each row deletion, can be

slower for large tables.

It does not log individual row deletions but

can be faster for large tables.

Access
Requires to DELETE privileges on

the table.

Requires to DROP and CREATE privileges on

the table.

19. How should data be structured to support Join Operations in a one-to-many
relationship?

In a one-to-many relationship, where one record in the primary table is related to many
records in the related table, the data should be structured in a way that supports
efficient join operations.
A practical method to establish a relationship between two tables is to utilize a foreign
key column within the related table that points to the primary key column in the primary
table. This allows the database to quickly locate all the related records for a given
primary record.
Consider two tables
CREATE TABLE customers_Table (

 customer_id INT PRIMARY KEY,

 name VARCHAR(50),

 email VARCHAR(100)

);

INSERT INTO customers_Table (customer_id, name, email)

VALUES (1, 'Pallavi Tiwari', 'Pallo@gmail.com');

INSERT INTO customers_Table (customer_id, name, email)

VALUES (2, 'Muskan Sharma', 'Muskan@gmail.com');

INSERT INTO customers_Table (customer_id, name, email)

VALUES (3, 'Raashi Batla', 'Raashi@gmail.com');

CREATE TABLE orders_Table (

 order_id INT PRIMARY KEY,

 customer_id INT,

 order_date DATE,

 total_amount DECIMAL(10, 2),

 FOREIGN KEY (customer_id) REFERENCES customers(customer_id)

);

INSERT INTO orders_Table(order_id, customer_id, order_date, total_amount)

VALUES (101, 1, '2023-01-05', 100.00);

INSERT INTO orders_Table (order_id, customer_id, order_date, total_amount)

VALUES (102, 1, '2023-02-12', 50.00);

INSERT INTO orders_Table (order_id, customer_id, order_date, total_amount)

VALUES (103, 2, '2023-02-18', 200.00);

INSERT INTO orders_Table (order_id, customer_id, order_date, total_amount)

VALUES (104, 3, '2023-01-25', 75.00);

In this example, the table name customer_Table has a primary key column called
"customer_id", a unique identifier for each customer. The orders_Table has a foreign
key column called "customer_id", which references the customer_id column in the
customers_Table. This establishes a one-to-many relationship between customers and
orders: each can have multiple orders, but each order is associated with a single
customer.
To retrieve a list of all customers and their associated orders, you could use a SQL
statement like this:
SELECT customers_Table.customer_id, customers_Table.name, orders_Table.order_id, orders_

Table.order_date, orders_Table.total_amount

FROM customers_Table

LEFT JOIN orders_Table ON customers_Table.customer_id = orders_Table.customer_id;

This statement uses a LEFT JOIN operation to include all records from the
customers_Table, and any matching records from the orders_Table. The ON clause
specifies the join condition, which matches records in the orders table with the
corresponding customer records based on the customer_id column.
Output:

As you can see, this query combines the data from both tables, showing the customer
and order information together in a single result set.
20. What is a transaction in SQL, and why is it important?
In SQL, a transaction is a logical unit of work consisting of one or more SQL statements
executed as a single atomic operation. The primary purpose of a transaction is to
ensure that a group of SQL statements is executed as a single, consistent, and reliable
unit.
When a transaction is initiated, a set of SQL statements are executed, and the changes
made to the database are temporarily stored in a buffer area called a transaction log. If
all the SQL statements in the transaction are executed successfully, the changes made
to the database are committed, which means they are made permanent.

 If any error occurs during the transaction, all changes made to the database are

rolled back, and the database is restored to its original state before the transaction
starts.

 The importance of transactions in SQL is maintaining the consistency, reliability,
and integrity of the data in the database. Transactions help to ensure that the
database is always in a valid state and that data is not lost or corrupted due to
errors or system failures.

 Transactions also provide a mechanism for concurrent access to the database,
allowing multiple users to access the database simultaneously without interfering
with each other's work.

 Transactions form the backbone of many business-critical applications and systems
by ensuring that database changes are processed reliably and consistently.

21. What is the difference between CHAR and VARCHAR in SQL?

CHAR is a fixed-length data type in SQL, meaning it will always occupy the exact
number of characters specified, even if the actual value is shorter. Padding with spaces
is done to meet the required length. On the other hand, VARCHAR is a variable-length
data type. It stores only the number of characters that are used, without extra padding,

making it more efficient for storing variable-length strings. However, CHAR can be
faster for fixed-length data as there is no length checking involved.
22. What is the use of the GROUP BY clause in SQL?
The GROUP BY clause in SQL is used to group rows that share the same values in
specified columns into summary rows. It is typically used with aggregate functions like
COUNT(), SUM(), AVG(), etc., to perform operations on these grouped data. For
instance, you can use GROUP BY to find the total sales for each product in a sales
table. It helps in producing summary reports and is commonly used for analytical
queries.
23. What is the default sorting order in SQL?

The default sorting order in SQL is ascending. When you run a query with the ORDER
BY clause, it automatically sorts the results in ascending order unless explicitly specified
as DESC (for descending order). For example, in a list of numbers or dates, sorting in
ascending order will arrange them from smallest to largest or from oldest to newest,
respectively. Ascending sorting can be done by simply using the ORDER BY clause
without specifying ASC.
24. What is the difference between UNION and UNION ALL in SQL?
UNION and UNION ALL are both used to combine the result sets of two or more
SELECT statements. The key difference is that UNION removes duplicate rows,
ensuring that each row in the final result set is unique. In contrast, UNION ALL includes
all rows from each query, including duplicates. While UNION is helpful when you need
to eliminate duplicates, UNION ALL is faster since it does not perform the duplicate
check and simply appends the results.
25. How do you use the DISTINCT keyword in SQL?

The DISTINCT keyword is used in SQL to remove duplicate values from the result set of
a SELECT query. It ensures that only unique records are returned. For instance, when
retrieving data from a column with repeating values, using DISTINCT will return each
unique value only once. This is useful when you want to know distinct categories, items,
or identifiers in a table. For example, SELECT DISTINCT department FROM
employees; will give a list of unique departments.
Intermediate SQL Interview Questions

26. What is ETL in SQL?
ETL (Extract, Transform, Load) is a common process used in data warehousing and

business intelligence to move data from various sources into a data warehouse or
database. The process involves three steps:

 Extract: In this step, data is extracted from various sources such as databases,

files, or web services. This may involve using SQL queries to extract data from
databases, APIs, or web scraping tools to extract data from web services or files.

 Transform: Once the data has been extracted, it is transformed or cleaned to

make it suitable for storage and analysis. This may involve applying filters,
aggregating data, or converting data types. SQL is commonly used to transform
data as part of the ETL process.

 Load: The final step is to load the transformed data into a data warehouse or
database. This may involve loading data into tables, creating indexes, or
performing other database operations.

The ETL process is critical for data integration, as it allows organizations to collect data
from various sources, transform it into a consistent format, and store it in a central
location for analysis and reporting. ETL tools such as Microsoft SQL Server Integration
Services (SSIS) or Talend can automate much of the ETL process and provide a visual

interface for designing and managing data flows.
27. What are the types of SQL JOINS?

In SQL, there are four types of JOINs:
 INNER JOIN: It returns only the matching rows between two tables. It combines

rows from two or more tables where the values in the common columns match.

 LEFT JOIN: It returns all the left and the matching rows from the right table. The
result will contain null values for the right table's columns if there are no matches.

 RIGHT JOIN: It returns all the rows from the right table and the matching ones from

the left table. The result will contain null values for the left table's columns if there
are no matches.

 FULL OUTER JOIN: It returns all the rows from both tables, including unmatched

ones. If there are no matches, the result will contain null values for the table's
columns that don't have a matching row.

There is also a CROSS JOIN, which returns the Cartesian product of the two tables,
which combines every row from the first table with all rows from the second table.
However, unlike the other JOIN types, it doesn't use a join condition to match the rows
between the tables.
28. What are Aggregate and Scalar functions?

In database management systems, there are two main types of functions used to
manipulate data: aggregate functions and scalar functions.

Aggregate functions perform calculations on a set of values and return a single value
representing a summary of that set. These functions are typically used with a GROUP
BY clause to group data by one or more columns and then perform calculations on each
group. Examples of aggregate functions include SUM, AVG, COUNT, MAX, and MIN.

Scalar functions, on the other hand, operate on a single value and also return a single

value. They can manipulate data in various ways, such as performing string operations,
date calculations, or mathematical computations. Examples of scalar functions include
CONCAT (to concatenate two strings), DATEADD (to add a specified amount of time to
date), and ABS (to return the absolute value of a number).

Aggregate functions are used to perform calculations on data sets and return a single
value representing some summary of that set. In contrast, scalar functions operate on a

single value and return a single value. Both functions are commonly used in database
management systems to manipulate and analyze data.
29. List different Types of Index in SQL?
In SQL, different indexes can be created to improve query performance. Here are some
of the most common types of indexes:
 Clustered Index: A clustered index in SQL organizes and stores the data rows in a

table based on the values of one or more columns. This index determines the
physical order of the data within the table, making it highly efficient for range
queries and sorting operations. By sorting and storing the data in the table based
on the values of the clustered index, queries that filter or sort by those columns can
be performed faster since they can utilize the physical order of the data.

 Non-Clustered Index: A non-clustered index creates a separate structure that
stores a copy of the indexed columns and a pointer to the corresponding data row
in the table. It allows for faster retrieval of specific rows or ranges of rows but can
be less efficient than a clustered index for sorting operations.

 Unique Index: A unique index enforces the constraint that the values in the

indexed column(s) must be unique across all rows in the table. Depending on the
table's primary key, it can be either a clustered or non-clustered index.

 Composite Index: A composite index is an index that is created on two or more

columns in a table. It can improve the performance of queries that filter on multiple
columns, allowing more efficient sorting and matching of the indexed values.

 Full-Text Index: A full-text index searches for text-based data in a table, such as

articles, documents, or web pages. It allows for fast and efficient searching of large
amounts of text using algorithms that analyze the data's words, phrases, and
context.

 Spatial Index: A spatial index is used to optimize the querying of geographic or
location-based data in a table, such as maps, GPS coordinates, or boundaries. It
uses specialized data structures and algorithms to store and search for spatial data
efficiently.

30. What is the difference between a clustered and a non-clustered index in SQL?

Features Clustered Index Non-Clustered Index

Definition
Determines the physical

order of the data.

A separate structure that contains the

index key and a pointer to the data.

Implementation
Only one clustered index per

table.

Multiple non-clustered indexes per table

are possible.

Features Clustered Index Non-Clustered Index

Data Retrieval
Faster data retrieval for large

data sets.
Slower data retrieval for large data sets.

Storage Contains the actual data. Does not contain the actual data.

Key
Determines the order of data

on the table.
It helps in searching for the data.

Unique Index
Clustered indexes are unique

by default.

Non-clustered indexes can be unique or

non-unique.

Data Modification
This may cause more

overhead for updates.
It May cause less overhead for updates.

Tables with

Clustered Index

It may require

defragmentation.
Does not require defragmentation.

31. What are the different types of normalizations?
In database design, several types of normalization are used to reduce data redundancy,
improve data integrity, and ensure efficient data retrieval. The different types of
normalizations are
 First Normal Form (1NF): This normalization ensures that the data in each table's

column is atomic, meaning that it cannot be further broken down into smaller
pieces. It also eliminates duplicate rows from the table.

 Second Normal Form (2NF): This normalization eliminates partial dependencies
by ensuring that each non-key column in a table is dependent on the entire primary
key rather than on its part of it.

 Third Normal Form (3NF): This normalization eliminates transitive dependencies
by ensuring that each non-key column in a table is dependent only on the primary
key and not on any other non-key columns.

 Boyce-Codd Normal Form (BCNF): This normalization is an extension of 3NF
and ensures that each determinant in a table is a candidate key.

 Fourth Normal Form (4NF): This normalization eliminates multivalued

dependencies by ensuring that each non-key column in a table is dependent on the

entire primary key and not on any subsets.

 Fifth Normal Form (5NF): This normalization is known as the Project-Join Normal
Form and ensures that each table in a database has a single theme or topic.

The normalization process is iterative, and it may be necessary to apply multiple
normalizations to achieve the desired data organization and efficiency level.
32. Explain Boyce-Codd Normal Form (BCNF).

Boyce-Codd Normal Form (BCNF) is a normalization technique used in database
design to eliminate redundancy and improve data integrity. In BCNF, each determinant
(i.e., attribute or set of attributes that uniquely determine another attribute) in a table
must be a candidate key (i.e., a unique identifier for each row).
In simpler terms, BCNF ensures that each attribute in a table depends on the entire
primary key rather than on just a part of it. This helps to reduce data redundancy and
improve data integrity by ensuring that each piece of data in the table is only stored
once and can be accessed efficiently.
BCNF is an extension of the Third Normal Form (3NF) and is helpful in situations where
3NF is insufficient to eliminate all forms of redundancy in a table.
However, it is essential to note that achieving BCNF can sometimes result in a higher
number of tables and more complex relationships between them. Hence, it is important
to balance the benefits of normalization with the practical considerations of database
design.
33. What is the difference between a join and a subquery in SQL?
Here's a table format to help illustrate the differences between a join and a subquery in
SQL:

Features Join Subquery

Syntax
SELECT ... FROM table1 JOIN table2

...

SELECT ... FROM table1 WHERE condition

IN (...)

Purpose
Combine columns from multiple

tables.

Retrieve data to use as a condition in the

query.

Usage
When querying data from multiple

tables.

When querying data based on a

condition.

Performance Typically faster than a subquery.
It can be slower than a join for large

datasets.

Result set
Returns columns from multiple

tables.
Returns a result set for a single table.

Features Join Subquery

Complexity More complex syntax and usage. Less complex syntax and usage

Flexibility
It can be used with various types of

joins.

It can be used with various types of

subqueries.

Code

readability

It can be less readable for complex

joins
It can be easier to read for simple queries

34. What are some standard clauses used with SELECT queries in SQL?

In SQL, the SELECT statement retrieves data from a database. Along with the
introductory SELECT statement, you can use clauses to specify additional details about
how the data should be retrieved. Here are some standard clauses used with the
SELECT statement example:
Here, we consider a table name List_1 and perform the following SELECT queries.
CREATE TABLE `List_1` (

 order_id int(11) NOT NULL,

 customer_id int(11) NOT NULL,

 order_date date NOT NULL,

 total_amount decimal(10,2) NOT NULL,

 PRIMARY KEY (`order_id`)

);

INSERT INTO `List_1` (`order_id`, `customer_id`, `order_date`, `total_amount`) VALUES

(1, 101, '2022-01-01', 50.00),

(2, 102, '2022-01-02', 100.00),

(3, 103, '2022-01-03', 75.00),

(4, 102, '2022-01-04', 25.00),

(5, 101, '2022-01-05', 80.00);

 WHERE: This clause filters data based on a specific condition. For example, you

can use WHERE to retrieve all records where a particular column is equal to a
specific value.

SELECT * FROM List_1

WHERE customer_id = 101;

Output:

 ORDER BY: This clause is used to sort the results in descending or ascending

order based on one or more columns. For example, you can use ORDER BY to
sort a list of customers by their last name.

SELECT * FROM List_1

ORDER BY total_amount DESC;

Output:

 GROUP BY: This clause group the results by one or more columns. For example,

you can use GROUP BY to group a list of sales by month or by product.

SELECT customer_id, COUNT(*) as order_count

FROM List_1

GROUP BY customer_id;

Output:

 HAVING: It filters the groups created by the GROUP BY clause based on a specific

condition. For example, you can use HAVING to retrieve only those groups where
the total sales are greater than a certain amount.

SELECT customer_id, AVG(total_amount) as avg_total

FROM List_1

GROUP BY customer_id

HAVING AVG(total_amount) > 60;

Output:

 LIMIT: This clause limits the number of rows returned by the query. For example,

you can use LIMIT to retrieve the top 10 customers based on their sales.

SELECT * FROM List_1

LIMIT 3;

Output:

35. How to get unique records from the table without using distinct keywords.

To get unique records from a table without using the DISTINCT keyword in SQL, you
can use the GROUP BY clause with aggregate functions like COUNT, SUM, or AVG.
Create a Table Sales
CREATE TABLE sales (

 product VARCHAR(50),

 quantity INT

);

INSERT INTO sales (product, quantity) VALUES ('apple', 20);

INSERT INTO sales (product, quantity) VALUES ('orange', 15);

INSERT INTO sales (product, quantity) VALUES ('apple', 30);

INSERT INTO sales (product, quantity) VALUES ('banana', 35);

To get unique products from the sales table, you can group the rows by the product
column and use the COUNT aggregate function to count the number of occurrences of
each product:
SELECT product

FROM sales

GROUP BY product;

Output:

If you want to include additional columns in the output, you can also use aggregate
functions for those columns. For example, to get the sum of quantities sold for each
product, you can use the SUM aggregate function:
SELECT product, SUM(quantity) as total_quantity

FROM sales

GROUP BY product;

Output:

By grouping the rows by the product column and using the aggregate functions, you can
effectively get unique records from the table without using the DISTINCT keyword.
36. Display the monthly Salary of Employees given annual salary.
CREATE TABLE employees (

 id INT NOT NULL,

 name VARCHAR(50) NOT NULL,

 annual_salary DECIMAL(10, 2) NOT NULL,

 PRIMARY KEY (id)

);

INSERT INTO employees (id, name, annual_salary)

VALUES (1, 'Muskan', 60000);

INSERT INTO employees (id, name, annual_salary)

VALUES (2, 'Pallavi', 75000);

INSERT INTO employees (id, name, annual_salary)

VALUES (3, 'Raashi', 90000);

SELECT id, name, annual_salary / 12 as monthly_salary

FROM employees;

Output:

37. Distinguish between nested subquery, correlated subquery, and join
operation.

For distinguishing between these three, we have taken some example through which it
would be better for you to understand the terms.
CREATE TABLE customerss (

 customer_id INT,

 customer_name VARCHAR(50),

 customer_location VARCHAR(50)

);

INSERT INTO customerss (customer_id, customer_name, customer_location)

VALUES

 (1, 'Shila', 'New York'),

 (2, 'Palak', 'India'),

 (3, 'Rajesh', 'New York');

CREATE TABLE orderss (

 order_id INT,

 customer_id INT,

 total_amount INT

);

INSERT INTO orderss (order_id, customer_id, total_amount)

VALUES

 (1, 1, 100),

 (2, 1, 150),

 (3, 2, 75),

 (4, 3, 200),

 (5, 3, 175);

Nested Subquery:
A nested subquery is a query that is embedded within another query. The inner query is
performed first, and the outer query uses its results. The inner query is enclosed within
parentheses and is usually placed in the WHERE or HAVING clause of the outer query.
A nested subquery returns a single value or a list of values.
Example:
SELECT order_id, customer_id, total_amount

FROM orderss

WHERE customer_id IN (

 SELECT customer_id

 FROM customerss

 WHERE customer_location = 'New York'

);

Output:

Correlated Subquery:

It uses a value from the outer query. The inner query is performed once for each row of
the outer query, and the result depends on the outer query's current row. A correlated
subquery filters or joins data from two or more tables.
Example:
SELECT customer_name, (

 SELECT SUM(total_amount)

 FROM orderss

 WHERE orderss.customer_id = customerss.customer_id

) AS total_spent

FROM customerss;

Output:

Join Operation:
When you have information about a single object or entity spread across multiple tables,
you can use a join operation to combine this information into a single table. Join
operations work by matching the data in a specific column between two or more tables
and then combining the rows from these tables into a new table. Different types of join
operations determine how data is matched and combined. You can retrieve a piece of
complete information about an object or entity using join operations from multiple tables.

Example:
CREATE TABLE employees (

 employee_id INT,

 employee_name VARCHAR(50),

 department_id INT

);

INSERT INTO employees (employee_id, employee_name, department_id)

VALUES

 (1, 'Juhi', 1),

 (2, 'Ruhi', 2),

 (3, 'Bharat', 2);

CREATE TABLE departments (

 department_id INT,

 department_name VARCHAR(50)

);

INSERT INTO departments (department_id, department_name)

VALUES

 (1, 'Sales'),

 (2, 'Marketing');

SELECT employees.employee_name, departments.department_name

FROM employees

INNER JOIN departments

ON employees.department_id = departments.department_id;

Output:

38. What is a Non-Equi Join?

A non-equi join is a type of join operation in SQL where the join condition is based on a
comparison operator other than equality, such as '>' (greater than), '>=' (greater than or
equal to), '<' (less than), '<=' (less than or equal to), or '<>' (not equal to).
Example:
CREATE TABLE table1 (

 id INT,

 value INT

);

INSERT INTO table1 (id, value) VALUES (1, 10);

INSERT INTO table1 (id, value) VALUES (2, 20);

INSERT INTO table1 (id, value) VALUES (3, 30);

CREATE TABLE table2 (

 id INT,

 value INT

);

INSERT INTO table2 (id, value) VALUES (1, 15);

INSERT INTO table2 (id, value) VALUES (2, 25);

INSERT INTO table2 (id, value) VALUES (3, 35);

SELECT *

FROM table1

JOIN table2

ON table1.value > table2.value;

Output:

As you can see, this query returns all possible combinations of rows where the value in
table1 is greater than the corresponding value in table2.
39. What are OLAP and OLTP?
OLAP(Online analytical processing) and OLTP(Online Transaction
Processing) are two different types of database systems that are used for different

purposes in the data processing. OLTP systems are mainly used for recording and
processing transactions in real-time. These transactions are usually brief and involve
updating, inserting, or deleting data in the database. OLTP systems are built to handle a
high volume of concurrent transactions while ensuring data consistency, accuracy, and
availability.
In contrast, OLAP systems are used for analytical processing, which involves complex
queries and data aggregation for decision-making and business intelligence. OLAP
systems typically store a large amount of historical data and allow for sophisticated data
analysis, such as trend analysis, forecasting, and data mining. OLAP systems are
designed for quick query performance and data retrieval, even when handling large
amounts of data.
To sum up, OLTP systems are primarily used for real-time transaction processing, while
OLAP systems are used for complex analysis of historical data to support decision-
making and business intelligence.
40. What is a Self Join in SQL?
A self-join in SQL occurs when a table is joined with itself. This is typically used when a
relationship exists within the same table and you need to compare rows within that
table. For instance, if you have an employee table where each employee has a
manager, you can use a self-join to find all employees with the same manager.
A self-join uses table aliases to distinguish between the original table and the copy of
the table:
SELECT A.employee_name, B.employee_name AS manager_name

FROM employees A

JOIN employees B ON A.manager_id = B.employee_id;

Here, the table employees is joined with itself, and we can see which employee is
managed by whom. The aliases A and B help identify the same table being used in
different contexts.
41. Explain the use of the COALESCE function in SQL.

The COALESCE function in SQL is used to return the first non-null value in a list of
expressions. It evaluates each expression one by one and returns the first expression
that is not NULL. If all expressions evaluate to NULL, the COALESCE function returns
NULL.
The function is particularly useful when dealing with nullable columns in databases
where you want to substitute a default value if a NULL is encountered. For instance, you
may want to return a default message if a user’s name is not available:
SELECT COALESCE(first_name, 'Unknown') AS display_name

FROM users;

In this example, if the first_name is NULL, the query will return 'Unknown'. The
COALESCE function can accept multiple arguments, making it more versatile than
ISNULL, which can only evaluate two arguments.
42. How do you delete duplicate rows in SQL?
To delete duplicate rows in SQL, you can use the ROW_NUMBER() function in a

Common Table Expression (CTE) or subquery to assign unique row numbers to rows
with duplicate values. Then, you can delete rows that have duplicate row numbers,
keeping only one instance.
Here's a step-by-step approach using a CTE in SQL Server:
WITH CTE AS (

 SELECT column_name,

 ROW_NUMBER() OVER (PARTITION BY column_name ORDER BY column_name) AS ro

w_num

 FROM table_name

)

DELETE FROM CTE WHERE row_num > 1;

Explanation:
 The ROW_NUMBER() function assigns a unique number to each row within a

partition (in this case, for each unique column_name).
 The PARTITION BY clause specifies the column that contains duplicate values,

and the ORDER BY clause determines how the rows should be numbered within
each partition.

 Rows where row_num > 1 are considered duplicates and are deleted.
In MySQL, you can achieve the same by using a DELETE JOIN:
DELETE t1 FROM table_name t1

JOIN table_name t2

ON t1.id > t2.id AND t1.column_name = t2.column_name;

This approach deletes rows from t1 where the value of column_name matches another
row in t2 but with a larger id, ensuring only one unique row is left.
43. What is a CTE (Common Table Expression) in SQL?
A Common Table Expression (CTE) is a temporary result set in SQL that is defined

using the WITH keyword and can be referenced within a SELECT, INSERT, UPDATE,
or DELETE query. CTEs make queries easier to read and maintain, especially when
working with complex joins, recursive queries, or hierarchical data.

A CTE is particularly useful for breaking down complicated queries into simpler steps or
reusing a common subquery in multiple parts of the main query. For example:
WITH CTE AS (

 SELECT employee_id, manager_id, salary

 FROM employees

 WHERE salary > 50000

)

SELECT * FROM CTE WHERE manager_id IS NOT NULL;

Here, the CTE named CTE filters employees who earn more than $50,000. This result
set is then queried in the main SELECT statement.
CTEs can also be recursive, meaning that the CTE can call itself to handle hierarchical
data structures like organizational charts or tree-like data models.
44. Explain how to perform pagination in SQL.
Answer:
Pagination in SQL refers to the process of dividing large sets of data into smaller

chunks or pages to improve performance and provide easier data navigation.
Pagination is commonly used in web applications to display data in a user-friendly way
across multiple pages.
In SQL, you can perform pagination using the LIMIT and OFFSET clauses (in MySQL
and PostgreSQL), or with ROW_NUMBER() in SQL Server.
MySQL/PostgreSQL Example:
SELECT * FROM table_name

ORDER BY column_name

LIMIT 10 OFFSET 20;

Explanation:
 LIMIT 10 specifies the number of rows to return (10 rows per page).
 OFFSET 20 specifies the starting point for fetching records (skips the first 20 rows,

i.e., starts from the 21st row).
SQL Server Example:
SELECT * FROM (

 SELECT *, ROW_NUMBER() OVER (ORDER BY column_name) AS row_num

 FROM table_name

) AS T

WHERE row_num BETWEEN 21 AND 30;

Explanation:
 ROW_NUMBER() assigns a unique row number to each row based on the

specified ordering.
 The outer query selects rows where row_num falls within the specified range (in

this case, rows 21 to 30).
Pagination is essential for handling large datasets and improving query performance,
especially in applications where users need to navigate through many records.
45. How do you handle NULL values in SQL?

Handling NULL values in SQL is crucial because NULL represents missing, undefined,
or unknown data. Operations involving NULL values can lead to unexpected results if
not handled properly.
Here are a few common methods to handle NULL values in SQL:
IS NULL / IS NOT NULL: You can use the IS NULL or IS NOT NULL operators to filter
records that have NULL values.
SELECT * FROM employees WHERE department IS NULL;

COALESCE Function: The COALESCE() function returns the first non-NULL value in a
list of expressions.
SELECT COALESCE(phone_number, 'Not Available') FROM contacts;

IFNULL() or ISNULL(): These functions can be used to replace NULL values with a
specified value.
SELECT ISNULL(salary, 0) FROM employees;

NULL-safe Comparisons: Comparing NULL values with the equality (=) operator will
always return FALSE. Use IS NULL or IS NOT NULL to safely check for NULL values in
conditions.
Handling NULL values ensures that your queries are more robust and return meaningful
results, especially when performing calculations or aggregations.
46. What is the difference between IN and EXISTS in SQL?

Both IN and EXISTS are used in SQL to filter data based on the results of a subquery,
but they differ in terms of execution and performance.
IN is used to compare a column to a set of values or the result of a subquery, and it
returns TRUE if the column value matches any value in the list.
SELECT * FROM employees WHERE department_id IN (SELECT id FROM departments);

EXISTS is used to check whether a subquery returns any rows. It returns TRUE if the
subquery returns at least one row.
SELECT * FROM employees WHERE EXISTS (SELECT 1 FROM departments WHERE

departments.id = employees.department_id);

Differences:
 Performance: EXISTS is often faster than IN for large datasets because EXISTS

stops executing as soon as it finds a match, whereas IN checks every value in the
subquery result.

 Data Handling: IN compares values, whereas EXISTS checks for the existence of

rows in the subquery.
Use EXISTS when the subquery involves checking for the existence of data, and use IN
when dealing with a small set of specific values.
47. How can you improve the performance of SQL queries?

Improving the performance of SQL queries is critical for optimizing database operations.
Here are several techniques to enhance query performance:

Use Indexes: Indexing key columns speeds up query execution by reducing the
amount of data the database engine needs to scan. However, avoid over-indexing as it
can slow down insert, update, and delete operations.
Optimize Joins: Use the most efficient join type for your query (INNER JOIN, LEFT

JOIN, etc.). Ensure that join conditions are indexed to avoid full table scans.
Avoid SELECT *: Instead of selecting all columns, specify only the columns you need.

This reduces the amount of data transferred and processed by the database.
SELECT column1, column2 FROM table_name;

Use WHERE Clauses Effectively: Ensure that filters in WHERE clauses use indexed

columns. Avoid applying functions directly to columns in the WHERE clause as this can
prevent the use of indexes.
SELECT * FROM orders WHERE order_date >= '2023-01-01';

Limit Results with LIMIT or TOP: When querying large tables, use LIMIT or TOP to
fetch only the required number of rows, especially in paginated queries.
Use Query Caching: In databases that support caching, enable query caching for
frequently executed queries to avoid running the same query multiple times.
Analyze Execution Plans: Use the EXPLAIN or EXPLAIN ANALYZE command to
review the query execution plan and identify performance bottlenecks.
By applying these techniques, you can significantly reduce query execution time and
improve overall database performance.
48. What is the difference between RANK() and DENSE_RANK() in SQL?
Both RANK() and DENSE_RANK() are window functions in SQL that assign ranks to
rows within a partition based on a specified ordering. However, they handle ties (rows
with the same rank) differently:
RANK():
Assigns the same rank to tied rows, but the rank of the next row is incremented by the
number of tied rows. In other words, there can be gaps in the ranks.
Example:
Row 1: RANK = 1

Row 2: RANK = 2

Row 3: RANK = 2 (Tie)

Row 4: RANK = 4

DENSE_RANK():
Assigns the same rank to tied rows but ensures the next rank is consecutive (no gaps).
Example:
Row 1: DENSE_RANK = 1

Row 2: DENSE_RANK = 2

Row 3: DENSE_RANK = 2 (Tie)

Row 4: DENSE_RANK = 3

Row 1: RANK = 1

Row 2: RANK = 2

Row 3: RANK = 2 (Tie)

Row 4: RANK = 4

Both functions are useful when ranking rows based on some criteria, but
DENSE_RANK() is typically used when you want continuous ranking without gaps.
49. What is a View in SQL, and why is it used?
A View in SQL is a virtual table that is the result of a pre-defined SQL query. It doesn’t

store data physically but provides a way to present data from one or more tables in a
structured format. Views are primarily used to simplify complex queries, enforce security
by restricting access to specific data, and provide a layer of abstraction to hide the
complexity of the underlying table structures.
For example, you can create a view to display only the relevant columns and rows from
a table:
CREATE VIEW employee_view AS

SELECT employee_name, department_name

FROM employees

JOIN departments ON employees.department_id = departments.id;

Benefits of using views:
 Simplified Querying: A view allows users to query complex joins or aggregations

as if they were simple tables.

 Security: Views can restrict access to sensitive columns or rows, ensuring users

see only what is necessary.

 Data Abstraction: Views hide the underlying table structure and any changes to it,
simplifying data presentation.

50. What are Aggregate Functions in SQL? Provide examples.
Aggregate functions in SQL perform a calculation on a set of values and return a

single value. They are often used with GROUP BY to summarize data. Common
aggregate functions include:
COUNT(): Returns the number of rows in a result set.
SELECT COUNT(*) FROM employees;

SUM(): Returns the sum of numeric values in a column.
SELECT SUM(salary) FROM employees;

AVG(): Returns the average of numeric values in a column.
SELECT AVG(salary) FROM employees;

MAX(): Returns the maximum value in a column.
SELECT MAX(salary) FROM employees;

MIN(): Returns the minimum value in a column.
SELECT MIN(salary) FROM employees;

Aggregate functions are essential for reporting and analyzing data, such as calculating
totals, averages, and counts across large datasets. They can be combined with GROUP
BY to calculate aggregated values for each group of rows.
Advanced SQL Interview Questions and Answers

51. What is a CTE (Common Table Expression) in SQL?

A CTE (Common Table Expression) is a temporary result set that can be referred to
within a SELECT, INSERT, UPDATE, or DELETE statement. It is defined using the
WITH clause and provides better readability for complex queries.
Example of CTE:
WITH EmployeeCTE AS (

 SELECT employee_id, first_name, salary

 FROM employees

 WHERE salary > 50000

)

SELECT * FROM EmployeeCTE;

CTEs improve query structure, making it easier to break down complex operations.
52. How does the MERGE statement work in SQL?
The MERGE statement in SQL allows you to perform INSERT, UPDATE, or DELETE

operations in a single statement based on conditions. It is typically used for merging
records from a source table into a target table.
Example:
MERGE INTO target_table AS T

USING source_table AS S

ON T.id = S.id

WHEN MATCHED THEN

 UPDATE SET T.name = S.name

WHEN NOT MATCHED THEN

 INSERT (id, name) VALUES (S.id, S.name);

This simplifies operations that would otherwise require multiple separate SQL
statements.
53. What are Window Functions in SQL?
Window functions perform calculations across a set of table rows related to the current
row. Unlike aggregate functions, they do not group the result into a single row but keep
the row structure intact.
Example of ROW_NUMBER() as a window function:
SELECT employee_name, salary, ROW_NUMBER() OVER (PARTITION BY department OR

DER BY salary DESC) AS rank

FROM employees;

Window functions are often used in ranking, aggregating, and calculating running totals
without affecting the row-level granularity of the result.
54. What is the difference between ROW_NUMBER(), RANK(), and DENSE_RANK()
in SQL?
These are all ranking window functions, but they behave differently in handling ties:
 ROW_NUMBER(): Assigns a unique number to each row, regardless of ties.
 RANK(): Assigns the same rank to tied rows but leaves a gap in the ranking.
 DENSE_RANK(): Assigns the same rank to tied rows but does not leave any gaps.

Example:
SELECT employee_name, salary,

ROW_NUMBER() OVER (ORDER BY salary DESC) AS row_num,

RANK() OVER (ORDER BY salary DESC) AS rank,

DENSE_RANK() OVER (ORDER BY salary DESC) AS dense_rank

FROM employees;

55. Explain Recursive CTE in SQL.
A Recursive CTE allows a CTE to reference itself. This is useful for hierarchical or tree-

like data structures, such as organizational charts or recursive relationships.
Example:
WITH RecursiveCTE (employee_id, manager_id, level) AS (

 SELECT employee_id, manager_id, 1

 FROM employees

 WHERE manager_id IS NULL

 UNION ALL

 SELECT e.employee_id, e.manager_id, level + 1

 FROM employees e

 INNER JOIN RecursiveCTE r ON e.manager_id = r.employee_id

)

SELECT * FROM RecursiveCTE;

This CTE recursively retrieves hierarchical data, such as employees reporting to their
managers.
56. What is the difference between UNION and UNION ALL?
 UNION: Combines the result sets of two or more SELECT statements but removes

duplicates.
 UNION ALL: Combines the result sets of two or more SELECT statements without

removing duplicates.
Example:
SELECT name FROM customers

UNION

SELECT name FROM suppliers;

UNION is slower due to the extra step of removing duplicates, while UNION ALL is
faster because it includes all rows.
57. How do you optimize a SQL query with GROUP BY?

To optimize a GROUP BY query:
1. Index the columns used in the GROUP BY and WHERE clauses.
2. Use aggregated columns selectively.
3. Avoid using functions on columns in the GROUP BY clause.
4. If possible, filter data before using GROUP BY.

Example:
SELECT department, AVG(salary)

FROM employees

WHERE department IS NOT NULL

GROUP BY department;

Indexes on department improve performance by allowing the query to access pre-sorted
data.
58. What is a Cross Join in SQL?
A Cross Join returns the Cartesian product of two tables. This means every row from
the first table is combined with every row from the second table.
SELECT *

FROM products

CROSS JOIN categories;

If the first table has 3 rows and the second has 4 rows, the result will contain 12 rows
(3x4).
59. What is a Partitioned Table in SQL?
A Partitioned Table splits a large table into smaller, more manageable pieces while

maintaining a logical single table view. It improves query performance and simplifies
data management.
CREATE TABLE orders (

 order_id INT,

 order_date DATE,

 amount DECIMAL(10, 2)

)

PARTITION BY RANGE (YEAR(order_date)) (

 PARTITION p2019 VALUES LESS THAN (2020),

 PARTITION p2020 VALUES LESS THAN (2021)

);

Partitioning makes it easier to query large datasets by accessing only relevant
partitions.
60. How do you handle NULL values in SQL joins?
To handle NULL values in joins, you can:
 Use LEFT JOIN or RIGHT JOIN to include rows with NULL values from one table.
 Use COALESCE() or ISNULL() to replace NULL values with a default value in the

result set.
Example:
SELECT e.employee_name, d.department_name

FROM employees e

LEFT JOIN departments d ON e.department_id = d.department_id;

Here, LEFT JOIN includes employees with NULL department IDs in the result.
61. What is an Index in SQL, and how does it improve performance?
An Index is a data structure that improves the speed of data retrieval operations on a
table. Indexes are created on one or more columns of a table and allow the database to
locate data without scanning the entire table.
Example:
CREATE INDEX idx_employee_name ON employees(employee_name);

Indexes improve the performance of SELECT queries but may slow down INSERT,
UPDATE, and DELETE operations due to the overhead of maintaining the index.
62. What is a Covering Index?
A Covering Index is an index that contains all the columns needed to satisfy a query. If
a query can be executed using only the index, without accessing the table, it is said to
be "covered" by the index.
Example:
CREATE INDEX idx_covering ON employees (first_name, last_name, salary);

Here, the index covers queries that select only first_name, last_name, and salary from
the employees table.
63. What is the difference between HAVING and WHERE in SQL?
 WHERE: Filters rows before aggregation. It cannot be used with aggregate

functions like COUNT(), SUM(), etc.
 HAVING: Filters rows after aggregation. It is typically used with GROUP BY to filter

aggregated data.
Example:
SELECT department, COUNT(*)

FROM employees

GROUP BY department

HAVING COUNT(*) > 10;

HAVING allows you to filter results based on the aggregate COUNT() function, whereas
WHERE filters individual rows before the GROUP BY clause.
64. Explain the concept of Transaction Isolation Levels.

Transaction isolation levels determine how and when the changes made by one
transaction become visible to other transactions. The SQL standard defines four levels
of isolation:
1. Read Uncommitted: Lowest isolation level; allows dirty reads (reads uncommitted

data).

2. Read Committed: Prevents dirty reads, but non-repeatable reads can still occur.

3. Repeatable Read: Prevents dirty and non-repeatable reads, but phantom reads
can occur.

4. Serializable: Highest isolation level; prevents all types of inconsistencies, including

phantom reads.

The higher the isolation level, the more consistent the data but at the cost of
performance due to locking mechanisms.
65. What is the purpose of a WITH clause in SQL?
The WITH clause, also known as CTE (Common Table Expression), is used to define

a temporary result set that can be referenced within a SELECT, INSERT, UPDATE, or
DELETE statement.

Example:
WITH EmployeeCTE AS (

 SELECT employee_id, first_name, salary

 FROM employees

)

SELECT * FROM EmployeeCTE WHERE salary > 50000;

The WITH clause improves query readability, especially for complex operations that
involve subqueries.
66. What is a Composite Index in SQL?
A Composite Index is an index that is created on two or more columns of a table. It
improves the performance of queries that filter data based on those multiple columns.
Example:
CREATE INDEX idx_emp_name_salary ON employees (first_name, last_name, salary);

This index will optimize queries that search or sort based on the combination of
first_name, last_name, and salary. However, the order of columns in a composite index
matters, as it can affect performance if not used in the right sequence.
67. How can you optimize a SQL query that uses JOIN operations?
To optimize a SQL query with JOIN:
1. Index the columns used in the JOIN condition.

2. Use INNER JOIN instead of LEFT JOIN when you don't need null records.

3. Minimize the dataset using the WHERE clause before applying JOIN.

4. Consider partitioning large tables to improve the performance of join operations.

Example:
SELECT e.first_name, d.department_name

FROM employees e

INNER JOIN departments d ON e.department_id = d.department_id

WHERE e.salary > 50000;

Indexes on employee_id and department_id will improve query performance.
68. What is a Trigger in SQL and how is it used?
A Trigger is a database object that automatically executes a specified SQL code in

response to certain events, such as INSERT, UPDATE, or DELETE. Triggers help
enforce data integrity and business rules.
Example:
CREATE TRIGGER salary_update_trigger

AFTER UPDATE ON employees

FOR EACH ROW

BEGIN

 IF NEW.salary < OLD.salary THEN

 SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = 'Salary cannot be reduced!';

 END IF;

END;

This trigger ensures that an employee’s salary cannot be reduced during an update.
69. What are Materialized Views, and how do they differ from regular Views?
A Materialized View is a database object that stores the result of a query physically.
Unlike a regular view, which is a virtual table that is generated dynamically upon query
execution, a materialized view stores data to improve performance, especially for
complex queries.
Example:
CREATE MATERIALIZED VIEW emp_dept_view AS

SELECT e.first_name, d.department_name

FROM employees e

JOIN departments d ON e.department_id = d.department_id;

Materialized views are useful for improving performance but require periodic refreshing
to keep the data current.
70. What is the difference between EXISTS and IN in SQL?
Both EXISTS and IN are used to filter data based on subqueries, but they operate
differently:
 EXISTS: Checks if the subquery returns any rows. It is efficient when the subquery

result set is large.
 IN: Compares values from the outer query with a list of values returned by the

subquery. It performs better when the subquery returns a smaller result set.
Example:
-- Using EXISTS

SELECT e.first_name

FROM employees e

WHERE EXISTS (SELECT 1 FROM departments d WHERE e.department_id = d.department_i

d);

-- Using IN

SELECT e.first_name

FROM employees e

WHERE e.department_id IN (SELECT department_id FROM departments);

71. What is Database Normalization and why is it important?
Database Normalization is the process of organizing a database to reduce redundancy
and improve data integrity. It involves dividing large tables into smaller, related tables
and defining relationships between them. The key goals of normalization are:
1. Eliminate redundancy.
2. Ensure data consistency.
3. Facilitate easier maintenance.

The main normal forms include:
 1NF: Ensures that each column contains atomic values.
 2NF: Requires 1NF compliance and removes partial dependencies.
 3NF: Requires 2NF compliance and eliminates transitive dependencies.

Normalization optimizes database structure but may introduce performance issues with
excessive joins.

72. What are Stored Procedures and why are they useful?
A Stored Procedure is a compiled group of SQL statements that can be executed as a

single unit. Stored procedures are useful for:
1. Code reusability.
2. Improved performance, as they are precompiled.
3. Security by controlling access to data.

Example:
CREATE PROCEDURE UpdateSalary(IN emp_id INT, IN new_salary DECIMAL)

BEGIN

 UPDATE employees SET salary = new_salary WHERE employee_id = emp_id;

END;

Stored procedures can accept input parameters and return output values, making them
a powerful tool for automating tasks in SQL.
73. Explain the concept of Database Denormalization.
Denormalization is the process of combining tables or adding redundant data to a
database to improve query performance. While normalization reduces redundancy,
denormalization may reintroduce it to reduce the complexity of joins and speed up read
queries.
Example: Instead of keeping employee and department data in separate tables,
denormalization might store department information directly within the employee table.
Denormalization trades data redundancy for query performance, particularly in systems
where read performance is more critical than storage efficiency.
74. What is the difference between Clustered and Non-Clustered Indexes?
 Clustered Index: Determines the physical order of data in a table. A table can only

have one clustered index, and the data is stored based on this index.
 Non-Clustered Index: Does not affect the physical order of the data. A table can

have multiple non-clustered indexes, and these indexes contain pointers to the
actual data.

Example:
CREATE CLUSTERED INDEX idx_employee_id ON employees(employee_id);

CREATE NONCLUSTERED INDEX idx_employee_name ON employees(first_name, last_nam

e);

Clustered indexes improve the performance of range queries, while non-clustered
indexes optimize individual lookups.
75. How do you handle Deadlocks in SQL?
A deadlock occurs when two or more transactions hold locks on resources and each is

waiting for the other to release the lock, causing a cycle. To handle deadlocks:
1. Minimize locking time by keeping transactions short.
2. Use consistent locking order in your application.
3. Set proper isolation levels to avoid unnecessary locking.

SQL Server automatically detects deadlocks and resolves them by rolling back one of
the transactions. You can also manually resolve deadlocks by catching the error and
retrying the transaction.
76. What is the purpose of the EXPLAIN command in SQL?

The EXPLAIN command is used to analyze and display the execution plan of a SQL
query. It shows how the query optimizer plans to execute the query, including details
like table scans, index usage, join operations, and cost estimates.
Example:
EXPLAIN SELECT * FROM employees WHERE salary > 50000;

By reviewing the execution plan, you can identify performance bottlenecks, such as full
table scans, and take steps to optimize the query.
77. What are SQL Subqueries, and how are they used?
A subquery is a query nested inside another query. Subqueries can be used to return
results that are used by the outer query. Subqueries can appear in SELECT, FROM,
WHERE, or HAVING clauses.
Example:
SELECT first_name

FROM employees

WHERE salary > (SELECT AVG(salary) FROM employees);

This query returns employees whose salary is higher than the average salary, which is
calculated by the subquery.
78. What are SQL Transactions and their properties?
A Transaction in SQL is a sequence of operations performed as a single logical unit. It
ensures data integrity through ACID properties:
1. Atomicity: Ensures all operations in a transaction are completed or none are.

2. Consistency: Guarantees that the database remains in a consistent state after the

transaction.

3. Isolation: Prevents concurrent transactions from interfering with each other.

4. Durability: Ensures that once a transaction is committed, it remains so, even in the

event of a system failure.
Example:
BEGIN TRANSACTION;

UPDATE employees SET salary = salary * 1.1 WHERE department_id = 1;

COMMIT;

If any part of the transaction fails, you can use ROLLBACK to revert all changes.
79. How do you create and use a Pivot Table in SQL?
A Pivot Table in SQL allows you to transform data from rows into columns. This is
useful for generating cross-tab reports.
Example:
SELECT department,

 SUM(CASE WHEN gender = 'Male' THEN 1 ELSE 0 END) AS male_count,

 SUM(CASE WHEN gender = 'Female' THEN 1 ELSE 0 END) AS female_count

FROM employees

GROUP BY department;

This query counts the number of males and females in each department, pivoting the
gender data into separate columns.
80. What is the difference between DELETE and TRUNCATE in SQL?
 DELETE: Removes rows from a table one by one, and each row deletion is logged.

It can be rolled back using a transaction.
 TRUNCATE: Removes all rows from a table quickly by deallocating the data pages.

It is faster but cannot be rolled back in most databases.
Example:
DELETE FROM employees WHERE employee_id = 1001;

TRUNCATE TABLE employees;

DELETE is more flexible, while TRUNCATE is faster for large datasets.
PostgreSQL Interview Questions

81. What is PostgreSQL?
PostgreSQL is an open-source, object-relational database management system

(ORDBMS) that emphasizes extensibility and compliance with SQL standards. It
supports both SQL and JSON for relational and non-relational queries. PostgreSQL is
widely known for its robustness, performance, and advanced features like complex
queries, foreign keys, triggers, updatable views, and transaction integrity.
82. What is the difference between PostgreSQL and MySQL?
 PostgreSQL is an object-relational database management system (ORDBMS),

whereas MySQL is a purely relational database management system (RDBMS).

 PostgreSQL supports advanced features like custom data types, table inheritance,
and function overloading, making it highly extensible.

 MySQL has a simpler system architecture and is more focused on read-heavy
applications, while PostgreSQL is designed for complex, write-heavy operations.

 PostgreSQL follows SQL standards more strictly than MySQL.
83. How do you create a new database in PostgreSQL?
To create a new database in PostgreSQL, you use the CREATE DATABASE command.
For example:
CREATE DATABASE testdb;

This command will create a new database named testdb. You can connect to this
database using the \c testdb command in the PostgreSQL command-line interface.
84. What is a CTE (Common Table Expression) in PostgreSQL?
A Common Table Expression (CTE) in PostgreSQL is a temporary result set defined
within a SQL query. It is typically used to make queries more readable by breaking them
into smaller parts. CTEs are created using the WITH clause. Example:
WITH sales_summary AS (

 SELECT department, SUM(sales) AS total_sales

 FROM sales

 GROUP BY department

)

SELECT * FROM sales_summary WHERE total_sales > 10000;

85. How does PostgreSQL handle indexing?
PostgreSQL supports various types of indexes, including B-
tree, Hash, GIN (Generalized Inverted Index), and GiST (Generalized Search Tree).
Indexes in PostgreSQL are automatically used by the query planner to optimize query
performance. They help in speeding up the retrieval of rows from a database at the cost
of additional storage space and slower inserts/updates. Example of creating an index:
CREATE INDEX idx_employee_id ON employees(employee_id);

86. What are TOAST tables in PostgreSQL?
TOAST (The Oversized-Attribute Storage Technique) is a mechanism in PostgreSQL
for storing large data, such as big text or binary objects. PostgreSQL stores data in
tuples, and if a tuple exceeds a certain size limit (usually 8KB), TOAST will
automatically compress and store it in an external storage space to avoid performance
issues.
87. What are the advantages of using JSONB in PostgreSQL?
JSONB is a binary representation of JSON data in PostgreSQL. It is optimized for
efficient storage and faster query performance when working with JSON data. The
advantages of JSONB over plain JSON include:
 Faster access and retrieval of JSON data.

 JSONB is stored in a decomposed binary format, allowing efficient indexing.

 Supports operators like @>, <@, and ? for advanced querying of JSON data.

88. How do you perform replication in PostgreSQL?
PostgreSQL supports multiple replication methods, including Streaming
Replication, Logical Replication, and Synchronous Replication.
 Streaming Replication: Sends real-time changes from the primary server to a

standby server.

 Logical Replication: Allows selective data replication (row-level) between
databases.

 Synchronous Replication: Ensures that each transaction is confirmed on both

primary and standby servers before committing.

Example of setting up streaming replication:
 Configure the primary server to enable wal_level to replica.
 Set up a standby server and configure the recovery.conf file.

89. How can you perform full-text search in PostgreSQL?
PostgreSQL offers built-in support for full-text search through the tsvector and tsquery
data types. Full-text search is used to search for words and phrases within text fields,
enabling more complex querying options. Example:
SELECT * FROM documents

WHERE to_tsvector('english', content) @@ to_tsquery('PostgreSQL & Database');

This query searches for documents containing both "PostgreSQL" and "Database" in
their content.
90. What is the VACUUM command in PostgreSQL?
The VACUUM command in PostgreSQL reclaims storage occupied by dead tuples that
result from UPDATE or DELETE operations. Without periodic vacuuming, PostgreSQL
tables would bloat, leading to reduced performance. Example:
VACUUM FULL employees;

This command reclaims storage and optimizes the performance of the employees table.

Ref: https://www.naukri.com/code360/library/sql-interview-questions

	UNIT IV
	1. What is PL/SQL?
	2. Compare SQL and PL/SQL.
	3. Do you know the basic structure of PL/SQL?
	4. What Is a Trigger? How Do You Use It?
	5. What data types does pl/SQL have?
	6. Explain the PL/SQL compilation process.
	7. Tell me what a package consists of.
	8. What are the benefits of using PL/SQL packages?
	9. Do you understand the meaning of exception handling?
	10. Give me some examples of predefined exceptions.
	11. What do you understand by PL/SQL cursors?
	12. When do we use triggers?
	13. What is a PL/SQL block?
	14. Name the differences between syntax and runtime errors.
	15. What are COMMIT, ROLLBACK, and SAVEPOINT?
	1. What is SQL?
	2. What is a database?
	3. What is a primary key, and why is it important in a database?
	4. What is a foreign key, and how is it different from a primary key?
	5. What is the difference between a LEFT JOIN and a RIGHT JOIN in SQL?
	6. How would you retrieve all the records from a " customers " table in SQL?
	7. What is a subquery, and how is it used in SQL?
	8. What is the difference between SQL's WHERE and HAVING clauses?
	9. What is the difference between a function and a stored procedure in SQL?
	10. Write a SQL query to find the second-highest salary from an employee table.
	11. What is the purpose of an index in SQL, and how does it work?
	12. What is the difference between NOSQL and SQL?
	13. Write a SQL query to find the names of employees who have not been assigned to any project.
	14. In the Student table, the marks column contains a list of values separated by commas. How can you determine the number of values in this comma-separated list?
	15. State the difference between cross-join and natural join.
	16. List the different types of relationships in SQL.
	17. What are Tables and Fields?
	18. What is the difference between the SQL statements DELETE and TRUNCATE?
	19. How should data be structured to support Join Operations in a one-to-many relationship?
	20. What is a transaction in SQL, and why is it important?
	21. What is the difference between CHAR and VARCHAR in SQL?
	22. What is the use of the GROUP BY clause in SQL?
	23. What is the default sorting order in SQL?
	24. What is the difference between UNION and UNION ALL in SQL?
	25. How do you use the DISTINCT keyword in SQL?
	Intermediate SQL Interview Questions
	26. What is ETL in SQL?
	27. What are the types of SQL JOINS?
	28. What are Aggregate and Scalar functions?
	29. List different Types of Index in SQL?
	30. What is the difference between a clustered and a non-clustered index in SQL?
	31. What are the different types of normalizations?
	32. Explain Boyce-Codd Normal Form (BCNF).
	33. What is the difference between a join and a subquery in SQL?
	34. What are some standard clauses used with SELECT queries in SQL?
	35. How to get unique records from the table without using distinct keywords.
	36. Display the monthly Salary of Employees given annual salary.
	37. Distinguish between nested subquery, correlated subquery, and join operation.
	38. What is a Non-Equi Join?
	39. What are OLAP and OLTP?
	40. What is a Self Join in SQL?
	41. Explain the use of the COALESCE function in SQL.
	42. How do you delete duplicate rows in SQL?
	43. What is a CTE (Common Table Expression) in SQL?
	44. Explain how to perform pagination in SQL.
	45. How do you handle NULL values in SQL?
	46. What is the difference between IN and EXISTS in SQL?
	47. How can you improve the performance of SQL queries?
	48. What is the difference between RANK() and DENSE_RANK() in SQL?
	49. What is a View in SQL, and why is it used?
	50. What are Aggregate Functions in SQL? Provide examples.

	Advanced SQL Interview Questions and Answers
	51. What is a CTE (Common Table Expression) in SQL?
	52. How does the MERGE statement work in SQL?
	53. What are Window Functions in SQL?
	54. What is the difference between ROW_NUMBER(), RANK(), and DENSE_RANK() in SQL?
	55. Explain Recursive CTE in SQL.
	56. What is the difference between UNION and UNION ALL?
	57. How do you optimize a SQL query with GROUP BY?
	58. What is a Cross Join in SQL?
	59. What is a Partitioned Table in SQL?
	60. How do you handle NULL values in SQL joins?
	61. What is an Index in SQL, and how does it improve performance?
	62. What is a Covering Index?
	63. What is the difference between HAVING and WHERE in SQL?
	64. Explain the concept of Transaction Isolation Levels.
	65. What is the purpose of a WITH clause in SQL?
	66. What is a Composite Index in SQL?
	67. How can you optimize a SQL query that uses JOIN operations?
	68. What is a Trigger in SQL and how is it used?
	69. What are Materialized Views, and how do they differ from regular Views?
	70. What is the difference between EXISTS and IN in SQL?
	71. What is Database Normalization and why is it important?
	72. What are Stored Procedures and why are they useful?
	73. Explain the concept of Database Denormalization.
	74. What is the difference between Clustered and Non-Clustered Indexes?
	75. How do you handle Deadlocks in SQL?
	76. What is the purpose of the EXPLAIN command in SQL?
	77. What are SQL Subqueries, and how are they used?
	78. What are SQL Transactions and their properties?
	79. How do you create and use a Pivot Table in SQL?
	80. What is the difference between DELETE and TRUNCATE in SQL?

	PostgreSQL Interview Questions
	81. What is PostgreSQL?
	82. What is the difference between PostgreSQL and MySQL?
	83. How do you create a new database in PostgreSQL?
	84. What is a CTE (Common Table Expression) in PostgreSQL?
	85. How does PostgreSQL handle indexing?
	86. What are TOAST tables in PostgreSQL?
	87. What are the advantages of using JSONB in PostgreSQL?
	88. How do you perform replication in PostgreSQL?
	89. How can you perform full-text search in PostgreSQL?
	90. What is the VACUUM command in PostgreSQL?

