
SNS COLLEGE OF TECHNOLOGY 
(An Autonomous Institution) 

COIMBATORE – 641035 

 

DEPARTMENT OF MECHATRONICS ENGINEERING 

Distributed Embedded Architecture 

Manufacturing Testing in Embedded Systems 

Manufacturing testing refers to the process of verifying that a physical device, typically produced in 

large quantities, functions correctly and meets the specifications before being delivered to the customer. 

Manufacturing testing ensures that each unit coming off the production line is free of defects and ready 

for deployment. 

A. Key Goals of Manufacturing Testing 

• Functional Verification: Ensure that all components of the embedded system, including sensors, 

processors, communication modules, and power supplies, function correctly. 

• Compliance Testing: Verify that the product complies with industry standards and regulations 

(e.g., electromagnetic compatibility (EMC), safety standards). 

• Defect Detection: Identify any manufacturing defects or issues such as soldering faults, improper 

component placement, or defective chips. 

• Stress and Environmental Testing: Ensure the system operates correctly under various stress 

conditions like temperature, humidity, and vibrations, often encountered in real-world use. 

B. Common Manufacturing Tests for Embedded Systems 

1. Board-Level Testing 

o In-Circuit Testing (ICT): This test is performed on the printed circuit board (PCB) after 

components are assembled. ICT checks for proper connections, soldering, and the 

functionality of basic components like resistors, capacitors, and integrated circuits. This 

is done using test probes that access various test points on the board. 

o Boundary Scan (JTAG): JTAG (Joint Test Action Group) is used to test embedded 

systems' interconnections without physical probes. It’s useful for testing connections 

between chips and verifying that digital circuits behave correctly. 



o Flying Probe Testing: This test is used to check for electrical faults on a PCB without 

requiring a dedicated test fixture. Flying probes move across the PCB to make contact 

with different test points, identifying shorts, opens, or missing components. 

2. Functional Testing 

o Power-On Self-Test (POST): After assembly, the embedded system undergoes a power-

on self-test, checking that all hardware components initialize and function correctly. 

o Hardware/Software Integration Test: This test checks whether the embedded software 

can successfully interface with the hardware (e.g., sensors, actuators). It verifies the 

functionality of each module, such as communication protocols (I2C, SPI, CAN), 

peripheral devices, and processors. 

o Burn-In Testing: This test involves running the system at elevated temperatures and 

voltages for an extended period to ensure the reliability of components over time. 

3. Environmental and Stress Testing 

o Thermal Testing: The system is subjected to various temperature conditions (extreme 

heat or cold) to ensure it operates within specified limits. 

o Vibration and Shock Testing: Embedded systems used in transportation or industrial 

environments must withstand physical stress, so they are tested with vibration and shock 

simulators to ensure mechanical integrity. 

o EMC and EMI Testing: Electromagnetic compatibility (EMC) and electromagnetic 

interference (EMI) tests ensure that the embedded system can operate without causing or 

being affected by electromagnetic noise. 

4. End-of-Line Testing 

o Once the product has passed all earlier tests, it undergoes end-of-line testing to verify its 

final functionality. This typically includes a full system test where the system is powered 

on, and all features are exercised to simulate real-world use. 

 

2. Program Validation and Testing 

Program validation and testing ensure that the software running on the embedded system functions as 

expected and meets the desired performance, safety, and reliability requirements. This is particularly 



critical for embedded systems since they often perform real-time, safety-critical tasks. 

A. Key Goals of Program Validation 

• Correctness: Ensure that the software behaves according to the design specification, without 

errors. 

• Performance: Validate that the software meets real-time deadlines and operates efficiently 

within hardware constraints (e.g., memory, CPU usage). 

• Reliability and Robustness: Test that the software handles unexpected inputs or conditions 

gracefully and maintains stable operation. 

• Safety and Security: For systems like automotive control units or medical devices, safety-critical 

software must be validated rigorously to ensure it does not cause harm under any condition. 

Security tests ensure the software is resilient against unauthorized access or tampering. 

B. Common Validation and Testing Techniques for Embedded Software 

1. Unit Testing 

o Definition: Unit testing involves testing individual components or functions of the 

embedded software in isolation to verify their correctness. 

o Automation: Tools like Ceedling or Google Test are used to automate unit testing in 

embedded systems. These tools simulate inputs and check outputs for correctness without 

involving the entire system. 

o Code Coverage: Unit tests aim for high coverage, ensuring that most of the code paths 

are exercised during testing. 

2. Integration Testing 

o Definition: Integration testing checks how different software modules interact with each 

other and the hardware. It ensures that the modules communicate correctly, even under 

boundary conditions. 

o Hardware/Software Integration: For embedded systems, integration testing often 

involves validating the software with real hardware or using Hardware-in-the-Loop 

(HIL) simulations. 

o Driver Testing: Testing low-level drivers (e.g., for sensors or communication buses) is 

crucial since these drivers act as the interface between the hardware and the rest of the 



software stack. 

3. System Testing 

o Definition: System testing validates the embedded software as a whole, ensuring that it 

meets all the functional requirements. This is usually performed on the final hardware 

platform. 

o Real-Time Testing: For real-time systems, system testing includes checking that the 

software meets timing constraints, such as responding to sensor data within specified 

deadlines. 

4. Regression Testing 

o Definition: Regression testing ensures that changes made to the software (e.g., bug fixes 

or updates) do not introduce new errors. Every time a change is made, a suite of tests is 

run to ensure that all previous functionality still works as expected. 

o Automation: Regression tests are often automated and run frequently during the 

development cycle to catch any bugs early in the process. 

5. Code Verification 

o Static Analysis: Tools like Polyspace, Coccinelle, and Coverity are used to perform 

static analysis, checking the code for potential runtime errors (e.g., memory leaks, buffer 

overflows) without executing it. This is important for embedded systems where manual 

debugging may be difficult. 

o Dynamic Analysis: Dynamic analysis tools like Valgrind check for errors such as 

memory leaks or incorrect memory access during program execution. 

6. Stress and Load Testing 

o Definition: Stress testing pushes the embedded software beyond its normal operational 

limits (e.g., high data rates or excessive inputs) to ensure that it can recover gracefully 

from overloads. 

o Timing Constraints: Real-time embedded systems are also subjected to load tests to 

ensure that they meet deadlines under heavy workloads or stress conditions. 

7. Formal Verification (for Safety-Critical Systems) 

o Definition: Formal verification uses mathematical methods to prove that the software 



meets its specification, ensuring no corner cases are missed. 

o Use in Safety-Critical Systems: Formal verification is used in industries like automotive 

(ISO 26262), avionics (DO-178C), and medical devices to provide the highest assurance 

that the software is free of critical bugs. 

8. Field Testing 

o Definition: Once the software passes lab testing, it is deployed in real-world conditions 

for field testing. The system operates in its intended environment (e.g., a car, factory, or 

medical device) to observe how it performs under actual use. 

o Bug Reporting: Any bugs or issues that arise during field testing are recorded for further 

debugging and validation before the final release. 

 


