
SNS COLLEGE OF TECHNOLOGY 
(An Autonomous Institution) 

COIMBATORE – 641035 

 

DEPARTMENT OF MECHATRONICS ENGINEERING 

Distributed Embedded Architecture 

Distributed Embedded Architecture refers to a system design approach where embedded systems are 

distributed across multiple nodes or devices, interconnected by communication networks to perform 

coordinated tasks. These systems are often found in applications such as automotive systems, industrial 

automation, IoT (Internet of Things) devices, and smart infrastructure. Below are the key concepts: 

1. Node-Based System Design 

• Nodes: A distributed embedded system consists of multiple embedded nodes, each with specific 

functionalities (e.g., sensors, actuators, control units). Each node usually has its own 

microcontroller or processor to process data locally. 

• Autonomy: Each node may operate independently, performing specific tasks like data acquisition, 

processing, or control. However, these nodes must communicate and collaborate to achieve the 

overall system's objectives. 

2. Communication Networks 

• Interconnection of Nodes: The nodes in a distributed system are connected via communication 

networks such as CAN bus, Ethernet, I2C, SPI, or wireless protocols (e.g., Wi-Fi, Zigbee). 

• Message Passing: Nodes communicate with each other using message-passing techniques, 

exchanging data or control signals. In real-time systems, this communication needs to be 

deterministic and meet timing requirements. 

• Protocols: Different communication protocols are used depending on the system requirements. 

For instance, CAN bus is widely used in automotive systems for real-time communication 

between Electronic Control Units (ECUs). 

3. Decentralized Control 

• Distributed Control: Instead of a single central controller, control logic is distributed across 

various nodes. For example, in a smart factory, multiple controllers may handle different 

processes such as machine control, quality inspection, or robotic coordination. 



• Synchronization: In many distributed embedded systems, there is a need for synchronization 

between nodes, especially when tasks are dependent on each other (e.g., timing coordination in 

automotive systems like ABS and engine control). 

4. Fault Tolerance and Redundancy 

• Redundancy: Many distributed embedded systems incorporate redundant nodes or 

communication paths to ensure fault tolerance. This is especially important in safety-critical 

systems like aerospace, automotive, or medical devices. 

• Fault Detection: Mechanisms like heartbeat signals or watchdog timers help detect failures in 

individual nodes, and backup nodes or processes can take over if needed. 

5. Real-Time Operation 

• Real-Time Constraints: Distributed embedded systems often operate in real-time environments 

where tasks must be executed within strict time bounds. Real-time communication protocols and 

Real-Time Operating Systems (RTOS) are typically used to ensure timely coordination of tasks 

between nodes. 

• Priority Management: Communication protocols in real-time systems often support priority-

based message passing to ensure that high-priority tasks (e.g., brake control in a car) are executed 

before less critical tasks. 

6. Scalability and Modularity 

• Scalability: Distributed architectures are scalable; additional nodes or devices can be added to 

the network without drastically altering the existing system. This makes the architecture adaptable 

to growing or changing requirements. 

• Modularity: Each node can be developed and tested independently, which simplifies system 

integration and maintenance. This modular approach also allows for easier upgrades and 

replacements of specific nodes. 

7. Energy Efficiency 

• Distributed Processing: In many cases, processing tasks are offloaded to local nodes, reducing 

the need for centralized processing power and lowering overall energy consumption. This is 

particularly relevant in battery-powered systems or remote IoT devices. 

• Power Management: Techniques like local data processing (edge computing) and efficient 



communication protocols reduce power consumption, which is a critical factor in embedded 

systems. 

OSI Model in Embedded Applications 

The OSI (Open Systems Interconnection) model is a conceptual framework used to understand network 

communication across various layers. In the context of embedded systems, the OSI model provides a 

way to structure communication between distributed nodes or devices. While not all layers are explicitly 

used in every embedded system, key elements of the OSI model are applicable to embedded applications, 

especially when network communication is involved. 

1. Layer 1: Physical Layer 

• Role in Embedded Systems: The physical layer in embedded systems refers to the hardware 

used for transmission of raw data between nodes. This includes cables, wireless transceivers, and 

physical media like Ethernet, CAN bus wiring, or RF components. 

• Example in Embedded Systems: In an automotive system, the CAN bus connects multiple 

ECUs (Electronic Control Units) using twisted pair cables, which form the physical medium for 

data transmission. 

2. Layer 2: Data Link Layer 

• Role in Embedded Systems: This layer ensures reliable data transfer between nodes on the same 

physical network. It handles error detection, frame synchronization, and flow control. 

• Embedded Example: In the CAN protocol, the data link layer manages frame arbitration 

(prioritizing messages), error handling, and acknowledgment, ensuring reliable transmission of 

data between ECUs. 

• Protocols Used: CAN, I2C, SPI. 

3. Layer 3: Network Layer 

• Role in Embedded Systems: The network layer is responsible for routing data between different 

network segments. In some distributed embedded systems, this layer is used to manage data 

communication between different networked devices. 

• Embedded Example: In IoT applications, embedded devices might use IPv6 over Low Power 

Wireless Personal Area Networks (6LoWPAN) to route packets across large-scale, distributed 

sensor networks. 



• Protocols Used: IP, 6LoWPAN. 

4. Layer 4: Transport Layer 

• Role in Embedded Systems: The transport layer ensures reliable data delivery, maintaining end-

to-end communication, managing flow control, and error recovery. It’s not commonly used in 

simple, resource-constrained embedded systems but is important in more complex systems. 

• Embedded Example: In IoT devices communicating over the internet, TCP (Transmission 

Control Protocol) ensures that messages are reliably transmitted between sensors and a cloud 

server. 

• Protocols Used: TCP, UDP. 

5. Layer 5: Session Layer 

• Role in Embedded Systems: The session layer manages communication sessions between 

devices, establishing, maintaining, and terminating sessions. 

• Embedded Example: In distributed control systems, session management can be used for 

communication between supervisory control units and local controllers over a communication 

network. 

• Protocols Used: MQTT (often for maintaining sessions in IoT systems). 

6. Layer 6: Presentation Layer 

• Role in Embedded Systems: The presentation layer is responsible for data formatting, 

encryption, and translation between different data representations. In embedded systems, this may 

not be a separate layer but is relevant in systems requiring data encoding or encryption. 

• Embedded Example: In systems where sensor data needs to be transmitted securely (e.g., smart 

meters or automotive diagnostics), encryption might be applied at this layer before transmission. 

• Protocols Used: JSON (data formatting in IoT), encryption protocols like SSL/TLS. 

7. Layer 7: Application Layer 

• Role in Embedded Systems: The application layer is where the communication between devices 

and users happens, including the protocols that provide network services. 

• Embedded Example: In a smart home system, the application layer might include protocols like 

CoAP (Constrained Application Protocol) for resource-constrained devices to communicate with 



a central server, or HTTP for IoT devices interacting with web-based applications. 

• Protocols Used: HTTP, CoAP, MQTT, and other IoT-specific protocols. 

 


