

SNS COLLEGE OF TECHNOLOGY

16ME207- STRENGTH OF MATERIALS

UNIT- IV DEFLECTION OF BEAMS AND BUCKLING OF COLUMNS

Columns - End conditions

SNS COLLEGE OF TECHNOLOGY

COLUMNS

Structural speaking a column is the vertical member of a broader construction that has the function of transferring the load it supports downwards or as a load transfer structure, in the same direction.

SNS COLLEGE OF TECHNOLOGY STRUT

A strut can be thought of as a long, inclined column. Column is a thick compression member within a structure, and it fails due to compression rather than buckling.

SNS COLLEGE OF TECHNOLOGY

Equivalent length ((e).

- i) Both ends pin joined (ov) hinged (ov)
- ii) One end tixed and other and tree.
- iii) One end fixed and the Other pie jointed
- iv) Both ends dixed.

SNS COLLEGE OF TECHNOLOGY End conditions

i) Both ends hinged

Equivalent length = Actual length.

(e = (
ii) One end tixed and Other end tree.

(e=2(, the tree and will sway sidewise.

and the Carrature in the length (will be similar to that of the upper half of the simple Column.

iii) One end fixed and Other pin Jointed.

(e = 1/2, between the top of the Column.

and in 4 lexion point.

iv) Both ends fixed.

 $le = \frac{1}{2}$, the distance between the two inflaxion Points