

SNS COLLEGE OF TECHNOLOGY

COIMBATORE - 35 DEPARTMENT OF MECHANICAL ENGINEERING

Valve timing and port timing diagrams are critical for understanding the operation of two-stroke and four-stroke engines. These diagrams show the opening and closing of valves (or ports) and their relation to the piston's position during the engine cycle.

1. Four-Stroke Engine Valve Timing Diagram

Phases of the Four-Stroke Cycle

1. Intake Stroke:

- The intake valve opens before the piston reaches the top dead center (TDC) to allow the air-fuel mixture to enter the cylinder.
- Intake valve closes after the piston passes the bottom dead center (BDC), ensuring maximum charge enters.

2. Compression Stroke:

• Both valves remain closed as the piston moves from BDC to TDC, compressing the air-fuel mixture.

3. Power Stroke:

- The spark plug ignites the mixture, causing a rapid increase in pressure that pushes the piston downward.
- Both valves remain closed.

4. Exhaust Stroke:

- \circ $\;$ The exhaust valve opens before the piston reaches BDC to release exhaust gases.
- It remains open as the piston moves upward, expelling burnt gases.

Valve Timing Diagram for a Four-Stroke Engine

- Intake Valve: Opens 10° - 20° before TDC and closes 40° - 50° after BDC.
- Exhaust Valve: Opens 30° - 50° before BDC and closes 10° - 20° after TDC.
- **Overlap**: Both intake and exhaust valves are slightly open at TDC during the transition from exhaust to intake strokes (10°–20°). This overlap improves scavenging.

2. Two-Stroke Engine Port Timing Diagram

In two-stroke engines, the valves are replaced by ports, and the timing of these ports determines the engine's operation.

Phases of the Two-Stroke Cycle

- 1. Intake Phase:
 - As the piston moves upward, a vacuum is created in the crankcase, drawing in the air-fuel mixture through the intake port.
 - The transfer port is closed during this phase.

2. Compression Phase:

• The piston compresses the air-fuel mixture in the combustion chamber while the transfer and exhaust ports are closed.

3. Power Phase:

• The compressed mixture is ignited, and the resulting explosion forces the piston downward.

4. Exhaust Phase:

- As the piston moves downward, the exhaust port opens, releasing burnt gases.
- The transfer port also opens, allowing the fresh charge from the crankcase to enter the cylinder.

Port Timing Diagram for a Two-Stroke Engine

- Exhaust Port: Opens $\sim 110^{\circ}$ before BDC and closes $\sim 110^{\circ}$ after BDC.
- **Transfer Port**: Opens ~120° before BDC and closes ~120° after BDC.
- Intake Port: Opens ~140° before TDC and closes ~140° after TDC.

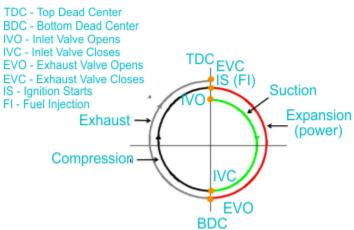
Key Differences Between Valve Timing and Port Timing

Aspect	Four-Stroke Engine	Two-Stroke Engine
Cycle	4 strokes (2 revolutions)	2 strokes (1 revolution)
Timing Mechanism	Valves (camshaft-controlled)	Ports (piston-controlled)
Overlap	Intake and exhaust overlap	Transfer and exhaust overlap
Efficiency	Higher, with more precise control	l Lower, with simpler construction

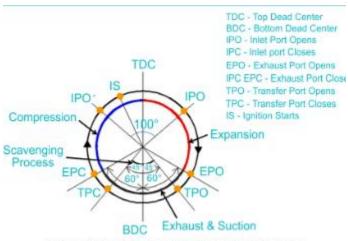
Purpose of Timing Diagrams

- 1. Maximizing Efficiency:
 - Ensures the air-fuel mixture is fully utilized for combustion.

2. Improving Power Output:


• Optimizes the timing of valve/port operations to maximize power.

3. Reducing Emissions:


• Prevents unburnt fuel or incomplete combustion by improving scavenging.

4. Ensuring Smooth Operation:

• Reduces knock, misfires, and irregularities in engine operation.

Theoretical Valve Timing Diagram of 4 Stroke Engine

Valve Timing Diagram of 2 Stroke Petrol Engine