

DEPARTMENT OF MECHANICAL ENGINEERING, 19MEB302/ Heat and Mass Transfer – UNIT III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Topic - Overall Heat Transfer Coefficient

(iv) combined convective and nadiative near manager.

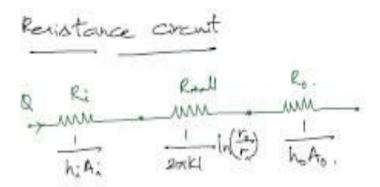
Overall heat transfer coefficient (HTC)

In the heat transfer analysis of heat exchange various thermal resistances in the path of heat flow from hot to cold fluid are combined into an overall heat transfer coefficient. For an heat exchanger, the area of heat flow in radial direction depends on the radius r',

DEPARTMENT OF MECHANICAL ENGINEERING, $19MEB302/\ Heat\ and\ Mass\ Transfer$ — UNIT III - PHASE CHANGE HEAT TRANSFER AND HEAT

EXCHANGERS

Topic - Overall Heat Transfer Coefficient


for which the overall heat transfer coefficient can be either based on mide surface area (en) enter surface area. Thus, Vi= Overall HTC based on maide surface area Uo = Overall HTC based on outside surface area. Then, Q=U; A; (T;-To) = U, Ao(T;-To). -> 0. Cold $U_{\lambda} = \frac{1}{\frac{1}{h_{1}} + \frac{r_{\lambda}}{\mu} + \ln\left(\frac{r_{\lambda}}{r_{\lambda}^{2}}\right) + \left(\frac{r_{\lambda}}{r_{\delta}}\right) \frac{1}{h_{0}}} \rightarrow \emptyset$ $U_{\lambda} = \frac{1}{h_{1}} + \frac{r_{\lambda}}{\mu} + \ln\left(\frac{r_{\lambda}}{r_{\lambda}^{2}}\right) + \left(\frac{r_{\lambda}}{r_{\delta}}\right) \frac{1}{h_{0}} \rightarrow \emptyset$ $U_{\lambda} = \frac{1}{h_{1}} + \frac{r_{\lambda}}{\mu} + \ln\left(\frac{r_{\lambda}}{r_{\lambda}^{2}}\right) + \left(\frac{r_{\lambda}}{r_{\delta}}\right) \frac{1}{h_{0}} \rightarrow \emptyset$ $U_{\lambda} = \frac{1}{h_{1}} + \frac{r_{\lambda}}{\mu} + \ln\left(\frac{r_{\lambda}}{r_{\lambda}^{2}}\right) + \left(\frac{r_{\lambda}}{r_{\delta}}\right) \frac{1}{h_{0}} \rightarrow \emptyset$ $U_{\lambda} = \frac{1}{h_{1}} + \frac{r_{\lambda}}{\mu} + \ln\left(\frac{r_{\lambda}}{r_{\lambda}}\right) + \left(\frac{r_{\lambda}}{r_{\delta}}\right) \frac{1}{h_{0}} \rightarrow \emptyset$ $U_{\lambda} = \frac{1}{h_{1}} + \frac{r_{\lambda}}{\mu} + \ln\left(\frac{r_{\lambda}}{r_{\lambda}}\right) + \left(\frac{r_{\lambda}}{r_{\delta}}\right) \frac{1}{h_{0}} \rightarrow \emptyset$ lly. $\left(\frac{\frac{r_o}{r_o}}{r_o}\right)\frac{1}{l_o} + \frac{r_o}{l_o}l_o\left(\frac{r_o}{r_o}\right) + \frac{1}{l_o}$

DEPARTMENT OF MECHANICAL ENGINEERING, 19 MEB 302/ Heat and Mass Transfer – UNIT III - PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Topic - Overall Heat Transfer Coefficient

Type of heat exchanger	U, W/m2 - "C"
Water-to-water	850-1700
Water-to-oil	100-350
Water-to-gasoline or kerosene	300-1000
Feedwater heaters	1000-8500
Steam-to-light fuel oil	200-400
Steam-to-heavy fuel oil	50-200
Steam condenser	1000-6000
Freon condenser (water cooled)	300-1000
Ammonia condenser (water cooled)	800-1400
Alcohol condensers (water cooled)	250-700
Gas-to-gas	10-40
Water-to-air in finned tubes (water in tubes)	30-60"
	400-8501
Steam-to-air in finned tubes (steam in tubes)	30-300
	400-4000

DEPARTMENT OF MECHANICAL ENGINEERING, 19MEB302/ Heat and Mass Transfer – UNIT III - PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Topic - Overall Heat Transfer Coefficient

References:

- 1. Kothandaraman C.P "Fundamentals of Heat and Mass Transfer" New Age International, New Delhi,4th Edition 2012 (Unit I, II, III, IV, V).
- 2. Frank P. Incropera and David P. DeWitt, "Fundamentals of Heat and Mass Transfer", John Wiley and Sons, New Jersey,6th Edition1998(Unit I,II,III,IV, V)
- 3. MIT open courseware https://ocw.mit.edu/courses/mechanical-engineering

Other web sources