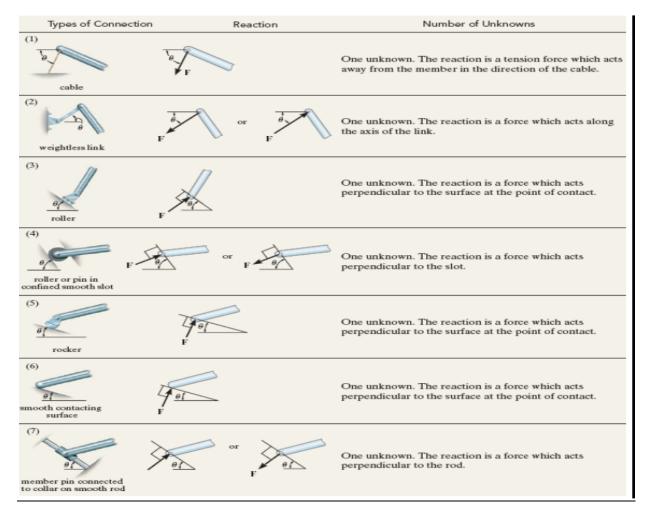
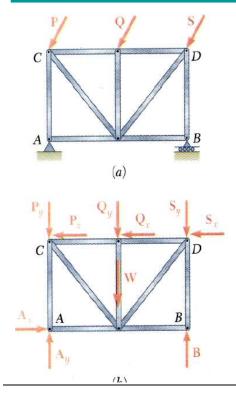

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution)


Department of Mechatronics Engineering

EQUILIBRIUM OF RIGID BODIES IN 2D

Rigid Body Equilibrium

RIGID BODY DYNAMICS:



Department of Mechatronics Engineering

RIGID BODY EQUILIBRIUM:

Force System	EGORIES OF EQUILIBRIUM IN TW Free-Body Diagram	
1. Collinear	\mathbf{F}_{1} \mathbf{F}_{2} \mathbf{F}_{3} x	Independent Equations $\Sigma F_x = 0$
2. Concurrent at a point	\mathbf{F}_1 \mathbf{F}_2 \mathbf{F}_4 \mathbf{F}_3	$\Sigma F_x = 0$ $\Sigma F_y = 0$
3. Parallel	$\mathbf{F}_{2} \mathbf{F}_{1}$ $\mathbf{F}_{3} \mathbf{F}_{4}$ \mathbf{F}_{4}	$\Sigma F_x = 0 \qquad \Sigma M_z = 0$
4. General	\mathbf{F}_{1} \mathbf{M} \mathbf{F}_{2} \mathbf{F}_{3} \mathbf{y} \mathbf{F}_{4} \mathbf{F}_{4}	$\Sigma F_x = 0 \qquad \Sigma M_z = 0$ $\Sigma F_y = 0$

Equilibrium of a Rigid Body in Two Dimensions

• For all forces and moments acting on a twodimensional structure,

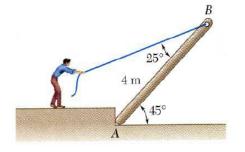
$$F_z = 0 \quad M_x = M_y = 0 \quad M_z = M_O$$

• Equations of equilibrium become

$$\sum F_x = 0$$
 $\sum F_y = 0$ $\sum M_A = 0$

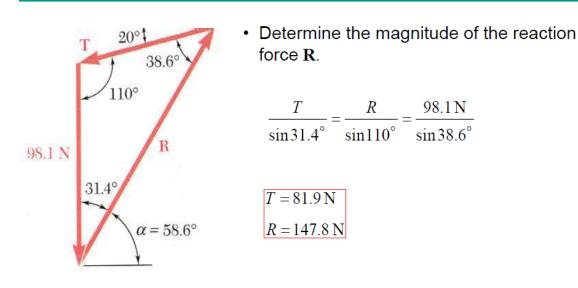
where A is any point in the plane of the structure.

- The 3 equations can be solved for no more than 3 unknowns.
- The 3 equations can not be augmented with additional equations, but they can be replaced


$$\Sigma F_x = 0$$
 $\Sigma M_A = 0$ $\Sigma M_B = 0$

Department of Mechatronics Engineering

Rigid Body Equilibrium: Example


A man raises a 10 kg joist, of length 4 m, by pulling on a rope.

Find the **tension in the rope** and the **reaction at A**.

Solution:

- Create a free-body diagram of the joist.
 The joist is a 3 force body acted upon by the rope, its weight, and the reaction at A.
- The three forces must be concurrent for static equilibrium.
 - Reaction **R** must pass through the intersection of the lines of action of the weight and rope forces.
 - Determine the direction of the reaction force $\ensuremath{\mathbf{R}}.$
- Utilize a **force triangle** to determine the magnitude of the reaction force **R**.

Rigid Body Equilibrium: Example

