

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE-35

DEPARTMENT OF MECHANICAL ENGINEERING

Displacements, Velocity and acceleration, their relationship

Displacement(s)

$$Speed = \frac{Dis \tan ce \text{ travelled}}{Time \text{ taken}} \qquad \text{unit}(\frac{m}{s}, \frac{km}{hr})$$

$$Velocity = \frac{Dis \tan ce \text{ travelled in particular direction}}{time \text{ taken}} \qquad \text{(m/s) [u,v] (vec.)}$$

Acceleration[a], (vector quantity)

$$= \frac{Change \text{ of velocity}}{time \text{ taken}}$$

$$= \frac{final \text{ velocity-initial velocity}}{time \text{ taken}}$$
(m/s²)

time taken

Negative acceleration is called as retraction[when final velocity<Initial velocity]

Average velocity

Average velocity =
$$\frac{Change \text{ of position}}{Change \text{ of time}} = \frac{\Delta x}{\Delta t}$$

Average speed

$$Average speed = \frac{Total \ dis \tan ce \ travelled}{Total \ time \ taken}$$

[If particle starts from a point and then if returns to the same point, average velocity is zero. But average speed is not zero.]

Instantaneous velocity

For any particle, the instantaneous velocity at any instant of time is the limit of average velocity as the increment of time approaches zero.

$$V = \lim_{M \to 0} \frac{\Delta X}{\Delta t} = \frac{dX}{dt}$$

Mathematical expressions for velocity and acceleration

S=Distance travelled by a particle in a straight line T= time taken by the particle to travel this distance 's'

Mathematically velocity[v] =
$$\frac{ds}{dt}$$
,

Acceleration[a]= =
$$\frac{dv}{dt}$$
 = = $\frac{d}{dt} \left(\frac{ds}{dt} \right) = \frac{d_2s}{dt^2}$

Types of rectilinear motion

[uniform acceleration, variable acceleration] Rectilinear motion with uniform acceleration

Equation of motion in a straight line

u=initial velocity[m/s]

v=final velocity[m/s]

s=distance [m]

t=-time taken by the particle, to change from u to v[sec]

a=acceleration of particle [m/s²]

change of velocity=final Velocity-Initial velocity=(v-u)

acceleration (or rate of change of velocity) = $\frac{Change \text{ of velocity}}{time \text{ taken}}$

$$a = \frac{v - u}{t}$$

$$(v-u) = at$$
 or $v=u+at$

Average velocity= =
$$\frac{initial\ velocity + final\ velocity}{2} = \frac{u+v}{2}$$

Average velocity = $\frac{initial\ velocity + final\ velocity}{2} = \frac{u + v}{2}$ Distance travelled by the particle in 't' sec, s=average velocity × time = $\left(\frac{u + v}{2}\right)t$

Substitute the above value of t in equation $s = ut + \frac{1}{2}at^2$

$$= u \left(\frac{v - u}{a}\right) + \frac{1}{2} a \left(\frac{v - u}{a}\right)^{2} = (v - u) \left[\frac{u}{a} + \frac{1}{2a}(v - u)\right]$$
$$= (v - u) \left[\frac{2u + v - u}{2a}\right] = \frac{(v - u)(v + u)}{2a} = \frac{v^{2} - u^{2}}{2a}$$

$$v^2 - u^2 = 2as$$

$$v^2 = u^2 + 2as$$

Equation of motion

(i)
$$v=u+at$$
, (ii) $S=ut+\frac{1}{2}at^2$, (iii) $v^2=u^2+2as$

[If the body starts from rest, its initial velocity is zero(ie,u=0)] [If the body comes to rest, its final velocity is zero(ie,V=0)]

Distance travelled in nth second

U=initial velocity of the particle
V=final velocity of the particle
a=constant acceleration of the particle
S_n =Distance travelled in n sec

 S_{n-1} =Distance travelled in (n-1) sec

$$S^{nth} = u + \frac{a}{2}(2n-1)$$

Rectilinear motion

S.no	Rectilinear motion		
	Horizontal motion	Vertical downward motion	Vertical upward motion
1.	v = u + at	v = u + gt	v = u - gt
2.	$s = ut + \frac{1}{2}at^2$	$h = ut + \frac{1}{2}gt^2$	$h = ut - \frac{1}{2}gt^2$
3.	$v^2 = u^2 + 2as$	$v^2 = u^2 + 2gh$	$v^2 = u^2 - 2gh$
4.	$S_n = u + \frac{a}{2}(2n-1)$	$h_n = u + \frac{g}{2}(2n-1)$	$h_n = u + \frac{g}{2}(2n-1)$

[i) when a body starts moving vertically downwards, its initial velocity=0, ii) when a body is projected vertically upwards, at the highest point, its final velocity, v=0]

upward motion \Rightarrow (i) Maximum height attained by upward particle $h_{\text{max}} = \frac{u^2}{2g}$

- (ii) Time taken by the particle in reach maximum height $t = \frac{u}{g}$
- (iii)Total time taken to return the surface (T)=2×Time up, $T = \frac{2u}{g}$

$$u = \sqrt{2g \times h_{\text{max}}}$$
 (if h_{max} is known), $u = t \times g$ (if time is known),

Downward motion ⇒

Striking velocity of the particle, moving downwards, from the position of rest $v^2 = u^2 + 2gh \Rightarrow v = \sqrt{2gh}$

Rectilinear motion with variable acceleration

(i)Displacement is function of time $s = f(t) \Rightarrow$

Velocity
$$v = \frac{ds}{dt}$$
, $\Rightarrow v = \frac{d}{dt}[f(t)]$

Acceleration,
$$a = \frac{dv}{dt} = \frac{d^2}{dt^2} [f(t)]$$

(ii) Acceleration is function of time a = f(t)

Velocity V=
$$\int f(t)dt$$

Displacement, S= $\int vdt = \iint f(t)dt$

- (iii) Acceleration is function of velocity
- (iii) Acceleration is function of distance