

### **SNS COLLEGE OF TECHNOLOGY**



Coimbatore-35. An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

#### **COURSE NAME : 23CST202 – OPERATING SYSTEMS**

#### **II YEAR/ IV SEMESTER**

#### **UNIT – I OVERVIEW AND PROCESS MANAGEMENT**

**Topic: Multithreading Models** 

Dr.V.Savitha

Associate Professor Department of Computer Science and Engineering



# Threads



- A thread is a basic unit of CPU utilization; it comprises a thread ID, a program counter, a register set, and a stack.
- It shares with other threads belonging to the same process its code section, data section, and other operating-system resources, such as open files and signals.
- A traditional (or heavyweight:) process has a single thread of control. If a process has multiple threads of control, it can perform more than one task at a time.



### Single and Multithreaded Processes







single-threaded process

multithreaded process



## Benefits



- Responsiveness may allow continued execution if part of process is blocked, especially important for user interfaces
- Resource Sharing threads share resources of process, easier than shared memory or message passing
- Economy cheaper than process creation, thread switching lower overhead than context switching
- Scalability process can take advantage of multiprocessor architectures



# Concurrency vs. Parallelism



• Concurrent execution on single-core system:

| single core | T <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> | T <sub>4</sub> | T <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> | T <sub>4</sub> | T <sub>1</sub> | ••• |
|-------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----|
|             | time           |                |                |                |                |                |                |                |                |     |

• Parallelism on a multi-core system:





## User Threads and Kernel Threads



- User threads management done by user-level threads library
- Three primary thread libraries:
  - POSIX Pthreads
  - Windows threads
  - Java threads
- Kernel threads Supported by the Kernel
- Examples virtually all general purpose operating systems, including:
  - Windows
  - Solaris
  - Linux
  - Tru64 UNIX
  - Mac OS X



**Multithreading Models** 



- Many-to-One
- One-to-One
- Many-to-Many



## Many-to-One



- Many user-level threads mapped to single kernel thread
- One thread blocking causes all to block
- Multiple threads may not run in parallel on multicore system because only one may be in kernel at a time
- Few systems currently use this model
- Examples:
  - Solaris Green Threads
  - GNU Portable Threads





## **One-to-One**



- Each user-level thread maps to kernel thread
- Creating a user-level thread creates a kernel thread
- More concurrency than many-to-one
- Number of threads per process sometimes restricted due to overhead
- Examples
  - Windows
  - Linux
  - Solaris 9 and later





## Many-to-Many Model



- Allows many user level threads to be mapped to many kernel threads
- Allows the operating system to create a sufficient number of kernel threads
- Solaris prior to version 9
- Windows with the ThreadFiber package





## **Two-level Model**



- Similar to M:M, except that it allows a user thread to be bound to kernel thread
- Examples
  - IRIX
  - HP-UX
  - Tru64 UNIX
  - Solaris 8 and earlier

