
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 23CST202 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – I  OVERVIEW AND PROCESS MANAGEMENT

Dr.V.Savitha

Associate Professor

Department of Computer Science and Engineering

Topic: Multithreading Issues



Thread Pools

• Create a number of threads in a pool where they await 
work

• Advantages:

– Usually slightly faster to service a request with an 
existing thread than create a new thread

19CSB201-Operating Systems/Unit-
I/Dr.V.Savitha 2

existing thread than create a new thread

– Allows the number of threads in the application(s) to be 
bound to the size of the pool

– Separating task to be performed from mechanics of 
creating task allows different strategies for running task

• i.e.Tasks could be scheduled to run periodically

2/22/2023



Threading Issues

• Semantics of fork() and exec() system calls
• Signal handling

– Synchronous and asynchronous
• Thread cancellation of target thread

19CSB201-Operating Systems/Unit-
I/Dr.V.Savitha 3

• Thread cancellation of target thread
– Asynchronous or deferred

• Thread-local storage
• Scheduler Activations

2/22/2023



Semantics of fork() and exec()

• Does fork()duplicate only the calling thread or all threads?
– Some UNIXes have two versions of fork

• exec() usually works as normal – replace the running process including all 
threads

19CSB201-Operating Systems/Unit-
I/Dr.V.Savitha 42/22/2023



Signal Handling

 Signals are used in UNIX systems to notify a process that a particular event has 
occurred.

 A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:

1. default
2. user-defined

19CSB201-Operating Systems/Unit-
I/Dr.V.Savitha 5

2. user-defined
 Every signal has default handler that kernel runs when handling signal

 User-defined signal handler can override default
 For single-threaded, signal delivered to process

 Where should a signal be delivered for multi-threaded? 
 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals for the process

2/22/2023



Thread Cancellation

• Terminating a thread before it has finished
• Thread to be canceled is target thread
• Two general approaches:

– Asynchronous cancellation terminates the target thread immediately
– Deferred cancellation allows the target thread to periodically check if 

it should be cancelled

19CSB201-Operating Systems/Unit-
I/Dr.V.Savitha 6

it should be cancelled
• Pthread code to create and cancel a thread:

2/22/2023



Thread Cancellation (Cont.)

• Invoking thread cancellation requests cancellation, but actual cancellation depends 
on thread state

19CSB201-Operating Systems/Unit-
I/Dr.V.Savitha 7

• If thread has cancellation disabled, cancellation remains pending until thread 
enables it

• Default type is deferred
– Cancellation only occurs when thread reaches cancellation point

• I.e. pthread_testcancel()
• Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled through signals

2/22/2023



Thread-Local Storage

• Thread-local storage (TLS) allows each thread to have its own copy of data
• Useful when you do not have control over the thread creation process (i.e., when 

using a thread pool)
• Different from local variables

– Local variables visible only during single function invocation
– TLS visible across function invocations

19CSB201-Operating Systems/Unit-
I/Dr.V.Savitha 8

– TLS visible across function invocations
• Similar to static data

– TLS is unique to each thread

2/22/2023



Scheduler Activations
• Both M:M and Two-level models require communication to maintain the 

appropriate number of kernel threads allocated to the application
• Typically use an intermediate data structure between user and kernel threads –

lightweight process (LWP)
– Appears to be a virtual processor on which process can schedule user thread 

to run
– Each LWP attached to kernel thread
– How many LWPs to create?

19CSB201-Operating Systems/Unit-
I/Dr.V.Savitha

9

– How many LWPs to create?
• Scheduler activations provide upcalls - a communication mechanism from the 

kernel to the upcall handler in the thread library
• This communication allows an application to maintain the correct number kernel 

threads

2/22/2023


