

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

23AMB201 - MACHINE LEARNING

II YEAR IV SEM

UNIT I – INTRODUCTION

TOPIC 4– Turning data into Probabilities and Statistics for Machine Learning

Redesigning Common Mind & Business Towards Excellence

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

Recall Training, Validation and Testing datasets

What is probability?

- 1. The ratio of the number of favourable outcomes to the total number of outcomes of an event is defined as probability.
- The number of favourable 2. outcomes for an experiment with 'n' outcomes is denoted by x.

Probability (Event) = Favourable Outcomes/Total Outcomes = x/n

Heads Heads Tails

Heads Tails Tails

- 1. Classical Probability
- 2. Empirical Probability
- 3. Subjective Probability
- 4. Axiomatic Probability

Types of Probabilities

Classical Probability

Outcomes in a sample space

Empirical Probability $P(A) = \frac{\text{Number of times event A occurs}}{\text{Total number of trials}}$

Observed data or historical frequencies

Subjective Probability

Personal judgment, experience

Axiomatic Probability

set of axioms (rules)

Turning data into probabilities/23AMB201-Machine Learning/Nandhini/ASP/MCA/SNSCT

Formula: $P(A) = \frac{\text{Number of favorable outcomes}}{\text{Total number of possible outcomes}}$

Naive Bayes

classification or regression tasks

Reinforcement learning

 $P(A \cup B) = P(A) + P(B)$

Bayesian networks, hidden Markov models

Example

	Α	В	С	D	E
1	Age	Income	Student	Creadit_Rating	Buys_Computer
2	<=30	high	no	fair	no
3	<=30	high	no	excellent	no
4	31-40	high	no	fair	yes
5	>40	medium	no	fair	yes
6	>40	low	yes	fair	yes
7	>40	low	yes	excellent	no
8	31-40	low	yes	excellent	yes
9	<=30	medium	no	fair	no
10	<=30	low	yes	fair	yes
11	>40	medium	yes	fair	yes
12	<=30	medium	yes	excellent	yes
13	31-40	medium	no	excellent	yes
14	31-40	high	yes	fair	yes
15	>40	medium	no	excellent	no

Statistics for Machine Learning

Core component of data analytics and machine learning. It helps you analyze and visualize data to find unseen patterns

- Functions:
- 1. Collecting
- 2. Analyzing
- 3. Interpreting
- 4. Visualizing Data

Standard deviation measures how far apart numbers are in a data set. **Variance**, on the other hand, gives an actual value to how much the numbers in a data set vary from the mean.

Mean	=	sum of all values total number of values
Median	=	middle value (when the data are arranged in order)
Mode	=	most common value

Example: 5,9,4,7,8,6,3,5,5,6

Find Mean, Median, Mode

References

- 1. Aurélien Géron "Hands-On Machine Learning with Scikit-Learn and TensorFlow" Publisher(s): O'Reilly Media, Inc 2017.
- https://medium.com/@ompramod9921/cross-validation-623620ff84c2
- 3. <u>https://serokell.io/blog/machine-learning-testing</u>

