
SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

19CSB303 and Composing Mobile Apps
UNIT 2

Mobile UI resources- Draw-able, Menu

Android - UI Controls

Input controls are the interactive components in your app's user interface. Android provides a

wide variety of controls you can use in your UI, such as buttons, text fields, seek bars, check

box, zoom buttons, toggle buttons, and many more.

A View is an object that draws something on the screen that the user can interact with and a

ViewGroup is an object that holds other View (and ViewGroup) objects in order to define the

layout of the user interface.

You define your layout in an XML file which offers a human-readable structure for the layout,

similar to HTML. For example, a simple vertical layout with a text view and a button looks like

this −

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView android:id="@+id/text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="I am a TextView" />

 <Button android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="I am a Button" />

</LinearLayout>

Android UI Controls

There are number of UI controls provided by Android that allow you to build the graphical user

interface for your app.

Sr.No. UI Control & Description

1

TextView

This control is used to display text to the user.

2

EditText

EditText is a predefined subclass of TextView that includes rich editing capabilities.

3

AutoCompleteTextView

The AutoCompleteTextView is a view that is similar to EditText, except that it shows a

list of completion suggestions automatically while the user is typing.

4

Button

A push-button that can be pressed, or clicked, by the user to perform an action.

5

ImageButton

An ImageButton is an AbsoluteLayout which enables you to specify the exact location of

its children. This shows a button with an image (instead of text) that can be pressed or

clicked by the user.

6

CheckBox

An on/off switch that can be toggled by the user. You should use check box when

presenting users with a group of selectable options that are not mutually exclusive.

7

ToggleButton

An on/off button with a light indicator.

8

RadioButton

The RadioButton has two states: either checked or unchecked.

9

RadioGroup

A RadioGroup is used to group together one or more RadioButtons.

10

ProgressBar

The ProgressBar view provides visual feedback about some ongoing tasks, such as when

you are performing a task in the background.

11

Spinner

A drop-down list that allows users to select one value from a set.

12

TimePicker

The TimePicker view enables users to select a time of the day, in either 24-hour mode or

AM/PM mode.

13

DatePicker

The DatePicker view enables users to select a date of the day.

https://www.tutorialspoint.com/android/android_textview_control.htm
https://www.tutorialspoint.com/android/android_edittext_control.htm
https://www.tutorialspoint.com/android/android_autocompletetextview_control.htm
https://www.tutorialspoint.com/android/android_button_control.htm
https://www.tutorialspoint.com/android/android_imagebutton_control.htm
https://www.tutorialspoint.com/android/android_checkbox_control.htm
https://www.tutorialspoint.com/android/android_togglebutton_control.htm
https://www.tutorialspoint.com/android/android_radiobutton_control.htm
https://www.tutorialspoint.com/android/android_radiogroup_control.htm
https://www.tutorialspoint.com/android/android_progressbar.htm
https://www.tutorialspoint.com/android/android_spinner_control.htm
https://www.tutorialspoint.com/android/android_timepicker_control.htm
https://www.tutorialspoint.com/android/android_datepicker_control.htm

Create UI Controls

Input controls are the interactive components in your app's user interface. Android provides a

wide variety of controls you can use in your UI, such as buttons, text fields, seek bars, check

box, zoom buttons, toggle buttons, and many more.

As explained in previous chapter, a view object may have a unique ID assigned to it which will

identify the View uniquely within the tree. The syntax for an ID, inside an XML tag is −

android:id="@+id/text_id"

To create a UI Control/View/Widget you will have to define a view/widget in the layout file and

assign it a unique ID as follows −

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView android:id="@+id/text_id"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="I am a TextView" />

</LinearLayout>

Then finally create an instance of the Control object and capture it from the layout, use the

following −

TextView myText = (TextView) findViewById(R.id.text_id);

Menus

Menus are a common user interface component in many types of applications. To provide a

familiar and consistent user experience, you should use the Menu APIs to present user actions

and other options in your activities.

Beginning with Android 3.0 (API level 11), Android-powered devices are no longer required to

provide a dedicated Menu button. With this change, Android apps should migrate away from a

dependence on the traditional 6-item menu panel and instead provide an app bar to present

common user actions.

Although the design and user experience for some menu items have changed, the semantics to

define a set of actions and options is still based on the Menu APIs. This guide shows how to

create the three fundamental types of menus or action presentations on all versions of Android:

Options menu and app bar
The options menu is the primary collection of menu items for an activity. It's where you

should place actions that have a global impact on the app, such as "Search," "Compose

email," and "Settings."

See the section about Creating an Options Menu.

Context menu and contextual action mode
A context menu is a floating menu that appears when the user performs a long-click on an

element. It provides actions that affect the selected content or context frame.

The contextual action mode displays action items that affect the selected content in a bar

at the top of the screen and allows the user to select multiple items.

See the section about Creating Contextual Menus.

Popup menu
A popup menu displays a list of items in a vertical list that's anchored to the view that

invoked the menu. It's good for providing an overflow of actions that relate to specific

content or to provide options for a second part of a command. Actions in a popup menu

should not directly affect the corresponding content—that's what contextual actions are

for. Rather, the popup menu is for extended actions that relate to regions of content in

your activity.

See the section about Creating a Popup Menu.

Defining a Menu in XML

For all menu types, Android provides a standard XML format to define menu items. Instead of

building a menu in your activity's code, you should define a menu and all its items in an XML

https://developer.android.com/reference/android/view/Menu.html
https://developer.android.com/reference/android/view/Menu.html
https://developer.android.com/guide/topics/ui/menus.html#options-menu
https://developer.android.com/guide/topics/ui/menus.html#options-menu
https://developer.android.com/guide/topics/ui/menus.html#FloatingContextMenu
https://developer.android.com/guide/topics/ui/menus.html#CAB
https://developer.android.com/guide/topics/ui/menus.html#context-menu
https://developer.android.com/guide/topics/ui/menus.html#PopupMenu

menu resource. You can then inflate the menu resource (load it as a Menu object) in your activity

or fragment.

Using a menu resource is a good practice for a few reasons:

 It's easier to visualize the menu structure in XML.

 It separates the content for the menu from your application's behavioral code.

 It allows you to create alternative menu configurations for different platform versions,

screen sizes, and other configurations by leveraging the app resources framework.

To define the menu, create an XML file inside your project's res/menu/ directory and build the

menu with the following elements:

<menu>

Defines a Menu, which is a container for menu items. A <menu> element must be the root

node for the file and can hold one or more <item> and <group> elements.
<item>

Creates a MenuItem, which represents a single item in a menu. This element may contain

a nested <menu> element in order to create a submenu.
<group>

An optional, invisible container for <item> elements. It allows you to categorize menu

items so they share properties such as active state and visibility. For more information,

see the section about Creating Menu Groups.

Here's an example menu named game_menu.xml:

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/new_game"

 android:icon="@drawable/ic_new_game"

 android:title="@string/new_game"

 android:showAsAction="ifRoom"/>

 <item android:id="@+id/help"

 android:icon="@drawable/ic_help"

 android:title="@string/help" />

</menu>

The <item> element supports several attributes you can use to define an item's appearance and

behavior. The items in the above menu include the following attributes:

android:id
A resource ID that's unique to the item, which allows the application to recognize the

item when the user selects it.
android:icon

A reference to a drawable to use as the item's icon.
android:title

A reference to a string to use as the item's title.
android:showAsAction

Specifies when and how this item should appear as an action item in the app bar.

These are the most important attributes you should use, but there are many more available. For

information about all the supported attributes, see the Menu Resource document.

https://developer.android.com/guide/topics/resources/menu-resource.html
https://developer.android.com/reference/android/view/Menu.html
https://developer.android.com/guide/topics/resources/index.html
https://developer.android.com/reference/android/view/Menu.html
https://developer.android.com/reference/android/view/MenuItem.html
https://developer.android.com/guide/topics/ui/menus.html#groups
https://developer.android.com/guide/topics/resources/menu-resource.html

You can add a submenu to an item in any menu (except a submenu) by adding a <menu> element

as the child of an <item>. Submenus are useful when your application has a lot of functions that

can be organized into topics, like items in a PC application's menu bar (File, Edit, View, etc.).

For example:

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/file"

 android:title="@string/file" >

 <!-- "file" submenu -->

 <menu>

 <item android:id="@+id/create_new"

 android:title="@string/create_new" />

 <item android:id="@+id/open"

 android:title="@string/open" />

 </menu>

 </item>

</menu>

