SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.
An Autonomous Institution

Accredited by NBA — AICTE and Accredited by NAAC — UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : OPERATING SYSTEMS
Il YEAR/ 11l SEMESTER
UNIT — I OVERVIEW AND PROCESS MANAGEMENT

Topic: Operation on Processes

B.Vinodhini
Associate Professor
Department of Computer Science and Engineering

> .
LI rrrurions



-~

Operation on Processes & =

 System must provide mechanisms for:
* process creation,
* process termination,

* and so on as detailed next

2/17/2025 OS/Unit-I0peration on Processess B.Vinodhini, ASP/CSE




-~

Process Creation > A

* Parent process create children processes, which, in turn create other
processes, forming a tree of processes

* Generally, process identified and managed via a process identifier
(pid)
e Resource sharing options
* Parent and children share all resources
 Children share subset of parent’s resources
e Parent and child share no resources

* Execution options
e Parent and children execute concurrently
e Parent waits until children terminate

2/17/2025 OS/Unit-I0peration on Processess B.Vinodhini, ASP/CSE




[

A Tree of Processes in Linux )

init
pid=1

login kthreadd sshd
pid = 8415 pid = 2 pid = 3028
bash khelper sshd
pid = 8416 pid = 6 pid = 3610
tesch
emacs
> pid = 4005

pid = 9298

2/17/2025 OS/Unit-10pers Processess B.Vinodhini, ASP/CSE




-~

Process Creation (Cont.) 3

SHTIronls

* Address space
e Child duplicate of parent
e Child has a program loaded into it

* UNIX examples
« fork () system call creates new process

* exec () system call used after a fork () to replace the process’
memory space with a new program

parent Wt resumes

child ' exec() »

2/17/2025 OS/Unit-I0peration on Processess B.Vinodhini, ASP/CSE




-~

C Program Forking Separate Process >

SHTIronls

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

pid -t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL) ;
printf("Child Complete");

}

return 0;

}
2/17/2025 OS/Unit-I0peration on Processess B.Vinodhini, ASP/CSE




Creating a Separate Process via Windows API

SHTIronls

#include <stdio.h>
#include <windows.h>

int main(VOID)

{

STARTUPINFO si;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&pi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /* use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */
&si,

&pi))
{

fprintf(stderr, "Create Process Failed");
return -1;
}
/* parent will wait for the child to complete */
WaitForSingleObject (pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread) ;

}
2/17/2025 OS/Unit-I0peration on Processess B.Vinodhini, ASP/CSE




) B

d)

g‘* L
i Process Termination N

» Process executes last statement and then asks the operating system to delete it using the

exit() system call.
* Returns status data from child to parent (via wait())

» Process’ resources are deallocated by operating system

« Parent may terminate the execution of children processes using the abort() system call.

Some reasons for doing so:
 Child has exceeded allocated resources
 Task assigned to child is no longer required

» The parent is exiting and the operating systems does not allow a child to continue if

Its parent terminates

2/17/2025 OS/Unit-I0peration on Processess B.Vinodhini, ASP/CSE




\
»
| &

ﬂ‘* S >
e Process Termination '

, g
CLLSTITITIONtS

« Some operating systems do not allow child to exists if its parent has terminated. If a process

terminates, then all its children must also be terminated.
 cascading termination. All children, grandchildren, etc. are terminated.

» The termination is initiated by the operating system.

» The parent process may wait for termination of a child process by using the wait()system call. The

call returns status information and the pid of the terminated process
pid = wait(&status);
* If no parent waiting (did not invoke wait()) process is a zombie

* If parent terminated without invoking wait , process is an orphan

2/17/2025 OS/Unit-I0peration on Processess B.Vinodhini, ASP/CSE



'-_;i?;fg?_z; Multiprocess Architecture — Chrome Browser

« Many web browsers ran as single process (some still do)
 If one web site causes trouble, entire browser can hang or crash

« Google Chrome Browser is multiprocess with 3 different types of processes:
« Browser process manages user interface, disk and network 1/0

« Renderer process renders web pages, deals with HTML, Javascript. A new renderer created for
each website opened

* Runs in sandbox restricting disk and network 1/0O, minimizing effect of security exploits
« Plug-in process for each type of plug-in

8ann s (3
{2)Wiley -Operating System Cc X6 BBC - Homepage & The New York Times - Brea & Google Chrome - The weo

€ > C C m.google.c’\'*roﬂe' ntl fen ruf download-mac r:r‘.f:‘a’\d:*il / gl ¢

? chrome %&m Features / Engiisa =

Each tab represents a separate process

2/17/2025 OS/Unit-I0peration on Processess B.Vinodhini, ASP/CSE




2/17/2025 OS/Unit-I0peration on Processess B.Vinodhini, ASP/CSE




