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Objectives

• To introduce CPU scheduling, which is the 
basis for multiprogrammed operating 
systems

• To describe various CPU-scheduling 
algorithms

• To discuss evaluation criteria for selecting a 
CPU-scheduling algorithm for a particular 
system

• To examine the scheduling algorithms of 
several operating systems



Basic Concepts

• Maximum CPU 
utilization obtained with 
multiprogramming

• CPU–I/O Burst Cycle – 
Process execution 
consists of a cycle of 
CPU execution and I/O 
wait

• CPU burst followed by 
I/O burst

• CPU burst distribution is 
of main concern



Histogram of CPU-burst Times



CPU Scheduler

● Short-term scheduler selects from among the processes 
in ready queue, and allocates the CPU to one of them
● Queue may be ordered in various ways

● CPU scheduling decisions may take place when a 
process:

1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

● Scheduling under 1 and 4 is nonpreemptive
● All other scheduling is preemptive

● Consider access to shared data
● Consider preemption while in kernel mode
● Consider interrupts occurring during crucial OS activities



Dispatcher

• Dispatcher module gives control of the 
CPU to the process selected by the 
short-term scheduler; this involves:
– switching context
– switching to user mode
– jumping to the proper location in the user 

program to restart that program

• Dispatch latency – time it takes for the 
dispatcher to stop one process and start 
another running



Scheduling Criteria

• CPU utilization – keep the CPU as busy as 
possible

• Throughput – # of processes that complete 
their execution per time unit

• Turnaround time – amount of time to 
execute a particular process

• Waiting time – amount of time a process 
has been waiting in the ready queue

• Response time – amount of time it takes 
from when a request was submitted until 
the first response is produced, not output  
(for time-sharing environment)



Scheduling Algorithm Optimization Criteria

• Max CPU utilization

• Max throughput

• Min turnaround time 

• Min waiting time 

• Min response time



First- Come, First-Served (FCFS) Scheduling
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• Suppose that the processes arrive in the order: P
1
 , P

2
 , 

P
3  The Gantt Chart for the schedule is:

• Waiting time for P
1
  = 0; P

2
  = 24; P

3 
= 27

• Average waiting time:  (0 + 24 + 27)/3 = 17



FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
 P
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• The Gantt chart for the schedule is:

• Waiting time for P
1 

= 6;
 
P

2
 = 0

; 
P

3 
= 3

• Average waiting time:   (6 + 0 + 3)/3 = 3
• Much better than previous case
• Convoy effect - short process behind long process

– Consider one CPU-bound and many I/O-bound processes



Shortest-Job-First (SJF) Scheduling

• Associate with each process the length 
of its next CPU burst
–  Use these lengths to schedule the process 

with the shortest time

• SJF is optimal – gives minimum average 
waiting time for a given set of processes
– The difficulty is knowing the length of the 

next CPU request

– Could ask the user



Example of SJF

                      ProcessArriva l Time Burst Time
             P

1
0.0 6

            P
2 

2.0 8
            P

3
4.0 7

            P
4

5.0 3

• SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7



Determining Length of Next CPU Burst

• Can only estimate the length – should be similar to 
the previous one
– Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU 
bursts, using exponential averaging

• Commonly, α set to ½
• Preemptive version called 

shortest-remaining-time-first



Prediction of the Length of the Next CPU Burst



Examples of Exponential Averaging

• α =0
– τ
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n
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• α =1
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– Only the actual last CPU burst counts

• If we expand the formula, we get:
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• Since both α and (1 - α) are less than or equal 
to 1, each successive term has less weight than 
its predecessor



Example of Shortest-remaining-time-first

• Now we add the concepts of varying arrival times and 
preemption to the analysis
         ProcessA arri Arrival TimeT Burst Time
 P

1
0 8

 P
2 

1 4
 P

3
2 9

 P
4

3 5
• Preemptive SJF Gantt Chart

• Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 
6.5 msec



Priority Scheduling

• A priority number (integer) is associated with each 
process

• The CPU is allocated to the process with the highest 
priority (smallest integer ≡ highest priority)
– Preemptive
– Nonpreemptive

• SJF is priority scheduling where priority is the inverse 
of predicted next CPU burst time

• Problem ≡ Starvation – low priority processes may 
never execute

• Solution ≡ Aging – as time progresses increase the 
priority of the process



Example of Priority Scheduling

         ProcessA arri Burst TimeT Priority
 P

1
10 3

 P
2 

1 1
 P

3
2 4

 P
4

1 5
P

5
5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec



Round Robin (RR)

• Each process gets a small unit of CPU time (time 
quantum q), usually 10-100 milliseconds.  After this time 
has elapsed, the process is preempted and added to the 
end of the ready queue.

• If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU time 
in chunks of at most q time units at once.  No process 
waits more than (n-1)q time units.

• Timer interrupts every quantum to schedule next process
• Performance

– q large ⇒ FIFO
– q small ⇒ q must be large with respect to context switch, 

otherwise overhead is too high



Example of RR with Time Quantum = 4

Process Burst Time
P
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3
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• The Gantt chart is: 

• Typically, higher average turnaround than SJF, but better 
response

• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch < 10 usec



Time Quantum and Context Switch Time



Turnaround Time Varies With The Time Quantum

80% of CPU bursts 
should be shorter than q



Multilevel Queue

• Ready queue is partitioned into separate queues, eg:
– foreground (interactive)
– background (batch)

• Process permanently in a given queue
• Each queue has its own scheduling algorithm:

– foreground – RR
– background – FCFS

• Scheduling must be done between the queues:
– Fixed priority scheduling; (i.e., serve all from foreground 

then from background).  Possibility of starvation.
– Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e., 80% to 
foreground in RR

– 20% to background in FCFS 



Multilevel Queue Scheduling



Multilevel Feedback Queue

• A process can move between the various 
queues; aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by 
the following parameters:
– number of queues
– scheduling algorithms for each queue
– method used to determine when to upgrade a 

process
– method used to determine when to demote a 

process
– method used to determine which queue a process 

will enter when that process needs service



Example of Multilevel Feedback Queue

• Three queues: 
– Q

0
 – RR with time quantum 8 milliseconds

– Q
1
 – RR time quantum 16 milliseconds

– Q
2
 – FCFS

• Scheduling
– A new job enters queue Q

0
 which is served 

FCFS
• When it gains CPU, job receives 8 

milliseconds
• If it does not finish in 8 milliseconds, 

job is moved to queue Q
1

– At Q
1
 job is again served FCFS and receives 

16 additional milliseconds
• If it still does not complete, it is 

preempted and moved to queue Q
2



Thread Scheduling

• Distinction between user-level and kernel-level threads
• When threads supported, threads scheduled, not processes
• Many-to-one and many-to-many models, thread library 

schedules user-level threads to run on LWP
– Known as process-contention scope (PCS) since scheduling 

competition is within the process
– Typically done via priority set by programmer

• Kernel thread scheduled onto available CPU is 
system-contention scope (SCS) – competition among all 
threads in system



Pthread Scheduling

• API allows specifying either PCS or SCS 
during thread creation
– PTHREAD_SCOPE_PROCESS schedules 

threads using PCS scheduling
– PTHREAD_SCOPE_SYSTEM schedules threads 

using SCS scheduling

• Can be limited by OS – Linux and Mac OS 
X only allow PTHREAD_SCOPE_SYSTEM



Pthread Scheduling API
#include <pthread.h> 
#include <stdio.h> 
#define NUM_THREADS 5 
int main(int argc, char *argv[]) { 
   int i, scope;
   pthread_t tid[NUM THREADS]; 
   pthread_attr_t attr; 
   /* get the default attributes */ 
   pthread_attr_init(&attr); 
   /* first inquire on the current scope */
   if (pthread_attr_getscope(&attr, &scope) != 0) 
      fprintf(stderr, "Unable to get scheduling scope\n"); 
   else { 
      if (scope == PTHREAD_SCOPE_PROCESS) 
         printf("PTHREAD_SCOPE_PROCESS"); 
      else if (scope == PTHREAD_SCOPE_SYSTEM) 
         printf("PTHREAD_SCOPE_SYSTEM"); 
      else
         fprintf(stderr, "Illegal scope value.\n"); 
   } 



Pthread Scheduling API

   /* set the scheduling algorithm to PCS or SCS */ 
   pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); 
   /* create the threads */
   for (i = 0; i < NUM_THREADS; i++) 
      pthread_create(&tid[i],&attr,runner,NULL); 
   /* now join on each thread */
   for (i = 0; i < NUM_THREADS; i++) 
      pthread_join(tid[i], NULL); 
} 
/* Each thread will begin control in this function */ 
void *runner(void *param)
{ 
   /* do some work ... */ 
   pthread_exit(0); 
} 



Multiple-Processor Scheduling

• CPU scheduling more complex when multiple CPUs are 
available

• Homogeneous processors within a multiprocessor
• Asymmetric multiprocessing – only one processor 

accesses the system data structures, alleviating the 
need for data sharing

• Symmetric multiprocessing (SMP) – each processor is 
self-scheduling, all processes in common ready queue, 
or each has its own private queue of ready processes
– Currently, most common

• Processor affinity – process has affinity for processor on 
which it is currently running
– soft affinity
– hard affinity
– Variations including processor sets



NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity



Multiple-Processor Scheduling – Load Balancing

• If SMP, need to keep all CPUs loaded 
for efficiency

• Load balancing attempts to keep 
workload evenly distributed

• Push migration – periodic task checks 
load on each processor, and if found 
pushes task from overloaded CPU to 
other CPUs

• Pull migration – idle processors pulls 
waiting task from busy processor



Multicore Processors

• Recent trend to place multiple 
processor cores on same physical chip

• Faster and consumes less power

• Multiple threads per core also growing
– Takes advantage of memory stall to make 

progress on another thread while 
memory retrieve happens

 



Multithreaded Multicore System



Real-Time CPU Scheduling

• Can present obvious 
challenges

• Soft real-time systems – 
no guarantee as to when 
critical real-time process 
will be scheduled

• Hard real-time systems – 
task must be serviced by 
its deadline

• Two types of latencies 
affect performance
1. Interrupt latency – time from arrival of interrupt to 

start of routine that services interrupt
2. Dispatch latency – time for schedule to take current 

process off CPU and switch to another

 



Real-Time CPU Scheduling (Cont.)

• Conflict phase of 
dispatch latency:
1. Preemption of 

any process 
running in 
kernel mode

2. Release by 
low-priority 
process of 
resources 
needed by 
high-priority 
processes

 



Priority-based Scheduling

• For real-time scheduling, scheduler must support 
preemptive, priority-based scheduling
– But only guarantees soft real-time

• For hard real-time must also provide ability to 
meet deadlines

• Processes have new characteristics: periodic ones 
require CPU at constant intervals
– Has processing time t, deadline d, period p
– 0 ≤ t ≤ d ≤ p
– Rate of periodic task is 1/p

 



Virtualization and Scheduling

• Virtualization software schedules 
multiple guests onto CPU(s)

• Each guest doing its own scheduling
– Not knowing it doesn’t own the CPUs

– Can result in poor response time

– Can effect time-of-day clocks in guests

• Can undo good scheduling algorithm 
efforts of guests



Rate Montonic Scheduling

• A priority is assigned based on the 
inverse of its period

• Shorter periods = higher priority;

• Longer periods = lower priority

• P
1
 is assigned a higher priority than P

2
.



Missed Deadlines with Rate Monotonic Scheduling



Earliest Deadline First Scheduling (EDF)

• Priorities are assigned according to 
deadlines:

the earlier the deadline, the higher the 
priority;

the later the deadline, the lower the 
priority



Proportional Share Scheduling

• T shares are allocated among all 
processes in the system

• An application receives N shares 
where N < T

• This ensures each application will 
receive N / T of the total processor 
time



POSIX Real-Time Scheduling

● The POSIX.1b standard
● API provides functions for managing real-time threads
● Defines two scheduling classes for real-time threads:
1. SCHED_FIFO - threads are scheduled using a FCFS strategy 

with a FIFO queue. There is no time-slicing for threads of 
equal priority

2. SCHED_RR - similar to SCHED_FIFO except time-slicing 
occurs for threads of equal priority

● Defines two functions for getting and setting scheduling 
policy:

1. pthread_attr_getsched_policy(pthread_att
r_t *attr, int *policy) 

2. pthread_attr_setsched_policy(pthread_att
r_t *attr, int policy) 



POSIX Real-Time Scheduling API

#include <pthread.h> 
#include <stdio.h> 
#define NUM_THREADS 5 
int main(int argc, char *argv[]) 
{ 
   int i, policy;
   pthread_t_tid[NUM_THREADS]; 
   pthread_attr_t attr; 
   /* get the default attributes */ 
   pthread_attr_init(&attr); 
   /* get the current scheduling policy */
   if (pthread_attr_getschedpolicy(&attr, &policy) != 0) 
      fprintf(stderr, "Unable to get policy.\n"); 
   else { 
      if (policy == SCHED_OTHER) printf("SCHED_OTHER\n"); 
      else if (policy == SCHED_RR) printf("SCHED_RR\n"); 
      else if (policy == SCHED_FIFO) printf("SCHED_FIFO\n"); 
   } 



POSIX Real-Time Scheduling API (Cont.)

   /* set the scheduling policy - FIFO, RR, or OTHER */ 
   if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0) 
      fprintf(stderr, "Unable to set policy.\n"); 
   /* create the threads */
   for (i = 0; i < NUM_THREADS; i++) 
      pthread_create(&tid[i],&attr,runner,NULL); 
   /* now join on each thread */
   for (i = 0; i < NUM_THREADS; i++) 
      pthread_join(tid[i], NULL); 
}
 
/* Each thread will begin control in this function */ 
void *runner(void *param)
{ 
   /* do some work ... */ 
   pthread_exit(0); 
} 



Operating System Examples

• Linux scheduling

• Windows scheduling

• Solaris scheduling



Linux Scheduling Through Version 2.5

• Prior to kernel version 2.5, ran variation of 
standard UNIX scheduling algorithm

• Version 2.5 moved to constant order O(1) 
scheduling time
– Preemptive, priority based
– Two priority ranges: time-sharing and real-time
– Real-time range from 0 to 99 and nice value from 100 to 140
– Map into  global priority with numerically lower values indicating higher priority
– Higher priority gets larger q
– Task run-able as long as time left in time slice (active)
– If no time left (expired), not run-able until all other tasks use their slices
– All run-able tasks tracked in per-CPU runqueue data structure

• Two priority arrays (active, expired)
• Tasks indexed by priority
• When no more active, arrays are exchanged

– Worked well, but poor response times for 
interactive processes



Linux Scheduling in Version 2.6.23 +

• Completely Fair Scheduler (CFS)
• Scheduling classes

– Each has specific priority
– Scheduler picks highest priority task in highest scheduling class
– Rather than quantum based on fixed time allotments, based on proportion of CPU time
– 2 scheduling classes included, others can be added

1. default
2. real-time

• Quantum calculated based on nice value from -20 to +19
– Lower value is higher priority
– Calculates target latency – interval of time during which task should run at least once
– Target latency can increase if say number of active tasks increases

• CFS scheduler maintains per task virtual run time in variable vruntime
– Associated with decay factor based on priority of task – lower priority is higher decay rate
– Normal default priority yields virtual run time = actual run time

• To decide next task to run, scheduler picks task with lowest virtual run time



CFS Performance



Linux Scheduling (Cont.)

• Real-time scheduling according to POSIX.1b
– Real-time tasks have static priorities

• Real-time plus normal map into global 
priority scheme

• Nice value of -20 maps to global priority 
100

• Nice value of +19 maps to priority 139



Windows Scheduling

• Windows uses priority-based preemptive 
scheduling

• Highest-priority thread runs next
• Dispatcher is scheduler
• Thread runs until (1) blocks, (2) uses time slice, 

(3) preempted by higher-priority thread
• Real-time threads can preempt non-real-time
• 32-level priority scheme
• Variable class is 1-15, real-time class is 16-31
• Priority 0 is memory-management thread
• Queue for each priority
• If no run-able thread, runs idle thread



Windows Priority Classes

• Win32 API identifies several priority classes to which a process can belong
– REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS, 

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS, 
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

– All are variable except REALTIME

• A thread within a given priority class has a relative priority
– TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL, LOWEST, IDLE

• Priority class and relative priority combine to give numeric priority

• Base priority is NORMAL within the class

• If quantum expires, priority lowered, but never below base



Windows Priority Classes (Cont.)

• If wait occurs, priority boosted depending on 
what was waited for

• Foreground window given 3x priority boost
• Windows 7 added user-mode scheduling 

(UMS) 
– Applications create and manage threads 

independent of kernel
– For large number of threads, much more efficient
– UMS schedulers come from programming language 

libraries like                                         C++ Concurrent 
Runtime (ConcRT) framework



Windows Priorities



Solaris

• Priority-based scheduling
• Six classes available

– Time sharing (default) (TS)
– Interactive (IA)
– Real time (RT)
– System (SYS)
– Fair Share (FSS)
– Fixed priority (FP)

• Given thread can be in one class at a time
• Each class has its own scheduling algorithm
• Time sharing is multi-level feedback queue

– Loadable table configurable by sysadmin



Solaris Dispatch Table 



Solaris Scheduling



Solaris Scheduling (Cont.)

• Scheduler converts class-specific 
priorities into a per-thread global 
priority
– Thread with highest priority runs next

– Runs until (1) blocks, (2) uses time slice, (3) 
preempted by higher-priority thread

– Multiple threads at same priority selected 
via RR



Algorithm Evaluation

• How to select CPU-scheduling algorithm for 
an OS?

• Determine criteria, then evaluate algorithms

• Deterministic modeling
– Type of analytic evaluation

– Takes a particular predetermined workload and 
defines the performance of each algorithm  for 
that workload

• Consider 5 processes arriving at time 0:



Deterministic Evaluation

● For each algorithm, calculate minimum average 
waiting time

● Simple and fast, but requires exact numbers for 
input, applies only to those inputs
● FCS is 28ms:

● Non-preemptive SFJ is 13ms:

● RR is 23ms:



Queueing Models

• Describes the arrival of processes, and CPU 
and I/O bursts probabilistically
– Commonly exponential, and described by mean
– Computes average throughput, utilization, waiting 

time, etc

• Computer system described as network of 
servers, each with queue of waiting processes
– Knowing arrival rates and service rates
– Computes utilization, average queue length, 

average wait time, etc



Little’s Formula
• n = average queue length
• W = average waiting time in queue
• λ = average arrival rate into queue
• Little’s law – in steady state, processes leaving 

queue must equal processes arriving, thus:
      n = λ x W
– Valid for any scheduling algorithm and arrival 

distribution
• For example, if on average 7 processes arrive 

per second, and normally 14 processes in 
queue, then average wait time per process = 2 
seconds



Simulations

• Queueing models limited

• Simulations more accurate
– Programmed model of computer system

– Clock is a variable

– Gather statistics  indicating algorithm performance

– Data to drive simulation gathered via
• Random number generator according to probabilities

• Distributions defined mathematically or empirically

• Trace tapes record sequences of real events in real systems



Evaluation of CPU Schedulers by Simulation



Implementation

● Even simulations have limited accuracy

● Just implement new scheduler and test in real systems

● High cost, high risk

● Environments vary

● Most flexible schedulers can be modified per-site or per-system

● Or APIs to modify priorities

● But again environments vary


