
Chapter 6: CPU Scheduling

• Basic Concepts
• Scheduling Criteria
• Scheduling Algorithms
• Thread Scheduling
• Multiple-Processor Scheduling
• Real-Time CPU Scheduling
• Operating Systems Examples
• Algorithm Evaluation

Objectives

• To introduce CPU scheduling, which is the
basis for multiprogrammed operating
systems

• To describe various CPU-scheduling
algorithms

• To discuss evaluation criteria for selecting a
CPU-scheduling algorithm for a particular
system

• To examine the scheduling algorithms of
several operating systems

Basic Concepts

• Maximum CPU
utilization obtained with
multiprogramming

• CPU–I/O Burst Cycle –
Process execution
consists of a cycle of
CPU execution and I/O
wait

• CPU burst followed by
I/O burst

• CPU burst distribution is
of main concern

Histogram of CPU-burst Times

CPU Scheduler

● Short-term scheduler selects from among the processes
in ready queue, and allocates the CPU to one of them
● Queue may be ordered in various ways

● CPU scheduling decisions may take place when a
process:

1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

● Scheduling under 1 and 4 is nonpreemptive
● All other scheduling is preemptive

● Consider access to shared data
● Consider preemption while in kernel mode
● Consider interrupts occurring during crucial OS activities

Dispatcher

• Dispatcher module gives control of the
CPU to the process selected by the
short-term scheduler; this involves:
– switching context
– switching to user mode
– jumping to the proper location in the user

program to restart that program

• Dispatch latency – time it takes for the
dispatcher to stop one process and start
another running

Scheduling Criteria

• CPU utilization – keep the CPU as busy as
possible

• Throughput – # of processes that complete
their execution per time unit

• Turnaround time – amount of time to
execute a particular process

• Waiting time – amount of time a process
has been waiting in the ready queue

• Response time – amount of time it takes
from when a request was submitted until
the first response is produced, not output
(for time-sharing environment)

Scheduling Algorithm Optimization Criteria

• Max CPU utilization

• Max throughput

• Min turnaround time

• Min waiting time

• Min response time

First- Come, First-Served (FCFS) Scheduling

Process Burst Time
 P

1
24

 P
2
 3

 P
3

3

• Suppose that the processes arrive in the order: P
1
 , P

2
 ,

P
3 The Gantt Chart for the schedule is:

• Waiting time for P
1
 = 0; P

2
 = 24; P

3
= 27

• Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
 P

2
 , P

3
 , P

1

• The Gantt chart for the schedule is:

• Waiting time for P
1

= 6;

P

2
 = 0

;
P

3
= 3

• Average waiting time: (6 + 0 + 3)/3 = 3
• Much better than previous case
• Convoy effect - short process behind long process

– Consider one CPU-bound and many I/O-bound processes

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length
of its next CPU burst
– Use these lengths to schedule the process

with the shortest time

• SJF is optimal – gives minimum average
waiting time for a given set of processes
– The difficulty is knowing the length of the

next CPU request

– Could ask the user

Example of SJF

 ProcessArriva l Time Burst Time
 P

1
0.0 6

 P
2

2.0 8
 P

3
4.0 7

 P
4

5.0 3

• SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Determining Length of Next CPU Burst

• Can only estimate the length – should be similar to
the previous one
– Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU
bursts, using exponential averaging

• Commonly, α set to ½
• Preemptive version called

shortest-remaining-time-first

Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

• α =0
– τ

n+1
 = τ

n
– Recent history does not count

• α =1
– τ

n+1
 = α t

n
– Only the actual last CPU burst counts

• If we expand the formula, we get:
τ

n+1
 = α t

n
+(1 - α)α t

n

-1

+ …
 +(1 - α)j α t

n

-j
 + …

 +(1 - α)n +1 τ
0

• Since both α and (1 - α) are less than or equal
to 1, each successive term has less weight than
its predecessor

Example of Shortest-remaining-time-first

• Now we add the concepts of varying arrival times and
preemption to the analysis
 ProcessA arri Arrival TimeT Burst Time
 P

1
0 8

 P
2

1 4
 P

3
2 9

 P
4

3 5
• Preemptive SJF Gantt Chart

• Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 =
6.5 msec

Priority Scheduling

• A priority number (integer) is associated with each
process

• The CPU is allocated to the process with the highest
priority (smallest integer ≡ highest priority)
– Preemptive
– Nonpreemptive

• SJF is priority scheduling where priority is the inverse
of predicted next CPU burst time

• Problem ≡ Starvation – low priority processes may
never execute

• Solution ≡ Aging – as time progresses increase the
priority of the process

Example of Priority Scheduling

 ProcessA arri Burst TimeT Priority
 P

1
10 3

 P
2

1 1
 P

3
2 4

 P
4

1 5
P

5
5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec

Round Robin (RR)

• Each process gets a small unit of CPU time (time
quantum q), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

• If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

• Timer interrupts every quantum to schedule next process
• Performance

– q large ⇒ FIFO
– q small ⇒ q must be large with respect to context switch,

otherwise overhead is too high

Example of RR with Time Quantum = 4

Process Burst Time
P

1
24

 P
2

3
 P

3
3

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better
response

• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch < 10 usec

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

Multilevel Queue

• Ready queue is partitioned into separate queues, eg:
– foreground (interactive)
– background (batch)

• Process permanently in a given queue
• Each queue has its own scheduling algorithm:

– foreground – RR
– background – FCFS

• Scheduling must be done between the queues:
– Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation.
– Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR

– 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

• A process can move between the various
queues; aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by
the following parameters:
– number of queues
– scheduling algorithms for each queue
– method used to determine when to upgrade a

process
– method used to determine when to demote a

process
– method used to determine which queue a process

will enter when that process needs service

Example of Multilevel Feedback Queue

• Three queues:
– Q

0
 – RR with time quantum 8 milliseconds

– Q
1
 – RR time quantum 16 milliseconds

– Q
2
 – FCFS

• Scheduling
– A new job enters queue Q

0
 which is served

FCFS
• When it gains CPU, job receives 8

milliseconds
• If it does not finish in 8 milliseconds,

job is moved to queue Q
1

– At Q
1
 job is again served FCFS and receives

16 additional milliseconds
• If it still does not complete, it is

preempted and moved to queue Q
2

Thread Scheduling

• Distinction between user-level and kernel-level threads
• When threads supported, threads scheduled, not processes
• Many-to-one and many-to-many models, thread library

schedules user-level threads to run on LWP
– Known as process-contention scope (PCS) since scheduling

competition is within the process
– Typically done via priority set by programmer

• Kernel thread scheduled onto available CPU is
system-contention scope (SCS) – competition among all
threads in system

Pthread Scheduling

• API allows specifying either PCS or SCS
during thread creation
– PTHREAD_SCOPE_PROCESS schedules

threads using PCS scheduling
– PTHREAD_SCOPE_SYSTEM schedules threads

using SCS scheduling

• Can be limited by OS – Linux and Mac OS
X only allow PTHREAD_SCOPE_SYSTEM

Pthread Scheduling API
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
int main(int argc, char *argv[]) {
 int i, scope;
 pthread_t tid[NUM THREADS];
 pthread_attr_t attr;
 /* get the default attributes */
 pthread_attr_init(&attr);
 /* first inquire on the current scope */
 if (pthread_attr_getscope(&attr, &scope) != 0)
 fprintf(stderr, "Unable to get scheduling scope\n");
 else {
 if (scope == PTHREAD_SCOPE_PROCESS)
 printf("PTHREAD_SCOPE_PROCESS");
 else if (scope == PTHREAD_SCOPE_SYSTEM)
 printf("PTHREAD_SCOPE_SYSTEM");
 else
 fprintf(stderr, "Illegal scope value.\n");
 }

Pthread Scheduling API

 /* set the scheduling algorithm to PCS or SCS */
 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
 /* create the threads */
 for (i = 0; i < NUM_THREADS; i++)
 pthread_create(&tid[i],&attr,runner,NULL);
 /* now join on each thread */
 for (i = 0; i < NUM_THREADS; i++)
 pthread_join(tid[i], NULL);
}
/* Each thread will begin control in this function */
void *runner(void *param)
{
 /* do some work ... */
 pthread_exit(0);
}

Multiple-Processor Scheduling

• CPU scheduling more complex when multiple CPUs are
available

• Homogeneous processors within a multiprocessor
• Asymmetric multiprocessing – only one processor

accesses the system data structures, alleviating the
need for data sharing

• Symmetric multiprocessing (SMP) – each processor is
self-scheduling, all processes in common ready queue,
or each has its own private queue of ready processes
– Currently, most common

• Processor affinity – process has affinity for processor on
which it is currently running
– soft affinity
– hard affinity
– Variations including processor sets

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

Multiple-Processor Scheduling – Load Balancing

• If SMP, need to keep all CPUs loaded
for efficiency

• Load balancing attempts to keep
workload evenly distributed

• Push migration – periodic task checks
load on each processor, and if found
pushes task from overloaded CPU to
other CPUs

• Pull migration – idle processors pulls
waiting task from busy processor

Multicore Processors

• Recent trend to place multiple
processor cores on same physical chip

• Faster and consumes less power

• Multiple threads per core also growing
– Takes advantage of memory stall to make

progress on another thread while
memory retrieve happens

Multithreaded Multicore System

Real-Time CPU Scheduling

• Can present obvious
challenges

• Soft real-time systems –
no guarantee as to when
critical real-time process
will be scheduled

• Hard real-time systems –
task must be serviced by
its deadline

• Two types of latencies
affect performance
1. Interrupt latency – time from arrival of interrupt to

start of routine that services interrupt
2. Dispatch latency – time for schedule to take current

process off CPU and switch to another

Real-Time CPU Scheduling (Cont.)

• Conflict phase of
dispatch latency:
1. Preemption of

any process
running in
kernel mode

2. Release by
low-priority
process of
resources
needed by
high-priority
processes

Priority-based Scheduling

• For real-time scheduling, scheduler must support
preemptive, priority-based scheduling
– But only guarantees soft real-time

• For hard real-time must also provide ability to
meet deadlines

• Processes have new characteristics: periodic ones
require CPU at constant intervals
– Has processing time t, deadline d, period p
– 0 ≤ t ≤ d ≤ p
– Rate of periodic task is 1/p

Virtualization and Scheduling

• Virtualization software schedules
multiple guests onto CPU(s)

• Each guest doing its own scheduling
– Not knowing it doesn’t own the CPUs

– Can result in poor response time

– Can effect time-of-day clocks in guests

• Can undo good scheduling algorithm
efforts of guests

Rate Montonic Scheduling

• A priority is assigned based on the
inverse of its period

• Shorter periods = higher priority;

• Longer periods = lower priority

• P
1
 is assigned a higher priority than P

2
.

Missed Deadlines with Rate Monotonic Scheduling

Earliest Deadline First Scheduling (EDF)

• Priorities are assigned according to
deadlines:

the earlier the deadline, the higher the
priority;

the later the deadline, the lower the
priority

Proportional Share Scheduling

• T shares are allocated among all
processes in the system

• An application receives N shares
where N < T

• This ensures each application will
receive N / T of the total processor
time

POSIX Real-Time Scheduling

● The POSIX.1b standard
● API provides functions for managing real-time threads
● Defines two scheduling classes for real-time threads:
1. SCHED_FIFO - threads are scheduled using a FCFS strategy

with a FIFO queue. There is no time-slicing for threads of
equal priority

2. SCHED_RR - similar to SCHED_FIFO except time-slicing
occurs for threads of equal priority

● Defines two functions for getting and setting scheduling
policy:

1. pthread_attr_getsched_policy(pthread_att
r_t *attr, int *policy)

2. pthread_attr_setsched_policy(pthread_att
r_t *attr, int policy)

POSIX Real-Time Scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
int main(int argc, char *argv[])
{
 int i, policy;
 pthread_t_tid[NUM_THREADS];
 pthread_attr_t attr;
 /* get the default attributes */
 pthread_attr_init(&attr);
 /* get the current scheduling policy */
 if (pthread_attr_getschedpolicy(&attr, &policy) != 0)
 fprintf(stderr, "Unable to get policy.\n");
 else {
 if (policy == SCHED_OTHER) printf("SCHED_OTHER\n");
 else if (policy == SCHED_RR) printf("SCHED_RR\n");
 else if (policy == SCHED_FIFO) printf("SCHED_FIFO\n");
 }

POSIX Real-Time Scheduling API (Cont.)

 /* set the scheduling policy - FIFO, RR, or OTHER */
 if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0)
 fprintf(stderr, "Unable to set policy.\n");
 /* create the threads */
 for (i = 0; i < NUM_THREADS; i++)
 pthread_create(&tid[i],&attr,runner,NULL);
 /* now join on each thread */
 for (i = 0; i < NUM_THREADS; i++)
 pthread_join(tid[i], NULL);
}

/* Each thread will begin control in this function */
void *runner(void *param)
{
 /* do some work ... */
 pthread_exit(0);
}

Operating System Examples

• Linux scheduling

• Windows scheduling

• Solaris scheduling

Linux Scheduling Through Version 2.5

• Prior to kernel version 2.5, ran variation of
standard UNIX scheduling algorithm

• Version 2.5 moved to constant order O(1)
scheduling time
– Preemptive, priority based
– Two priority ranges: time-sharing and real-time
– Real-time range from 0 to 99 and nice value from 100 to 140
– Map into global priority with numerically lower values indicating higher priority
– Higher priority gets larger q
– Task run-able as long as time left in time slice (active)
– If no time left (expired), not run-able until all other tasks use their slices
– All run-able tasks tracked in per-CPU runqueue data structure

• Two priority arrays (active, expired)
• Tasks indexed by priority
• When no more active, arrays are exchanged

– Worked well, but poor response times for
interactive processes

Linux Scheduling in Version 2.6.23 +

• Completely Fair Scheduler (CFS)
• Scheduling classes

– Each has specific priority
– Scheduler picks highest priority task in highest scheduling class
– Rather than quantum based on fixed time allotments, based on proportion of CPU time
– 2 scheduling classes included, others can be added

1. default
2. real-time

• Quantum calculated based on nice value from -20 to +19
– Lower value is higher priority
– Calculates target latency – interval of time during which task should run at least once
– Target latency can increase if say number of active tasks increases

• CFS scheduler maintains per task virtual run time in variable vruntime
– Associated with decay factor based on priority of task – lower priority is higher decay rate
– Normal default priority yields virtual run time = actual run time

• To decide next task to run, scheduler picks task with lowest virtual run time

CFS Performance

Linux Scheduling (Cont.)

• Real-time scheduling according to POSIX.1b
– Real-time tasks have static priorities

• Real-time plus normal map into global
priority scheme

• Nice value of -20 maps to global priority
100

• Nice value of +19 maps to priority 139

Windows Scheduling

• Windows uses priority-based preemptive
scheduling

• Highest-priority thread runs next
• Dispatcher is scheduler
• Thread runs until (1) blocks, (2) uses time slice,

(3) preempted by higher-priority thread
• Real-time threads can preempt non-real-time
• 32-level priority scheme
• Variable class is 1-15, real-time class is 16-31
• Priority 0 is memory-management thread
• Queue for each priority
• If no run-able thread, runs idle thread

Windows Priority Classes

• Win32 API identifies several priority classes to which a process can belong
– REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

– All are variable except REALTIME

• A thread within a given priority class has a relative priority
– TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL, LOWEST, IDLE

• Priority class and relative priority combine to give numeric priority

• Base priority is NORMAL within the class

• If quantum expires, priority lowered, but never below base

Windows Priority Classes (Cont.)

• If wait occurs, priority boosted depending on
what was waited for

• Foreground window given 3x priority boost
• Windows 7 added user-mode scheduling

(UMS)
– Applications create and manage threads

independent of kernel
– For large number of threads, much more efficient
– UMS schedulers come from programming language

libraries like C++ Concurrent
Runtime (ConcRT) framework

Windows Priorities

Solaris

• Priority-based scheduling
• Six classes available

– Time sharing (default) (TS)
– Interactive (IA)
– Real time (RT)
– System (SYS)
– Fair Share (FSS)
– Fixed priority (FP)

• Given thread can be in one class at a time
• Each class has its own scheduling algorithm
• Time sharing is multi-level feedback queue

– Loadable table configurable by sysadmin

Solaris Dispatch Table

Solaris Scheduling

Solaris Scheduling (Cont.)

• Scheduler converts class-specific
priorities into a per-thread global
priority
– Thread with highest priority runs next

– Runs until (1) blocks, (2) uses time slice, (3)
preempted by higher-priority thread

– Multiple threads at same priority selected
via RR

Algorithm Evaluation

• How to select CPU-scheduling algorithm for
an OS?

• Determine criteria, then evaluate algorithms

• Deterministic modeling
– Type of analytic evaluation

– Takes a particular predetermined workload and
defines the performance of each algorithm for
that workload

• Consider 5 processes arriving at time 0:

Deterministic Evaluation

● For each algorithm, calculate minimum average
waiting time

● Simple and fast, but requires exact numbers for
input, applies only to those inputs
● FCS is 28ms:

● Non-preemptive SFJ is 13ms:

● RR is 23ms:

Queueing Models

• Describes the arrival of processes, and CPU
and I/O bursts probabilistically
– Commonly exponential, and described by mean
– Computes average throughput, utilization, waiting

time, etc

• Computer system described as network of
servers, each with queue of waiting processes
– Knowing arrival rates and service rates
– Computes utilization, average queue length,

average wait time, etc

Little’s Formula
• n = average queue length
• W = average waiting time in queue
• λ = average arrival rate into queue
• Little’s law – in steady state, processes leaving

queue must equal processes arriving, thus:
 n = λ x W
– Valid for any scheduling algorithm and arrival

distribution
• For example, if on average 7 processes arrive

per second, and normally 14 processes in
queue, then average wait time per process = 2
seconds

Simulations

• Queueing models limited

• Simulations more accurate
– Programmed model of computer system

– Clock is a variable

– Gather statistics indicating algorithm performance

– Data to drive simulation gathered via
• Random number generator according to probabilities

• Distributions defined mathematically or empirically

• Trace tapes record sequences of real events in real systems

Evaluation of CPU Schedulers by Simulation

Implementation

● Even simulations have limited accuracy

● Just implement new scheduler and test in real systems

● High cost, high risk

● Environments vary

● Most flexible schedulers can be modified per-site or per-system

● Or APIs to modify priorities

● But again environments vary

