
Chapter 5: Process Synchronization

• Background
• The Critical-Section Problem
• Peterson’s Solution
• Synchronization Hardware
• Mutex Locks
• Semaphores
• Classic Problems of Synchronization
• Monitors
• Synchronization Examples
• Alternative Approaches

Objectives

• To present the concept of process
synchronization.

• To introduce the critical-section problem,
whose solutions can be used to ensure the
consistency of shared data

• To present both software and hardware
solutions of the critical-section problem

• To examine several classical
process-synchronization problems

• To explore several tools that are used to
solve process synchronization problems

Background

• Processes can execute concurrently
– May be interrupted at any time, partially completing

execution
• Concurrent access to shared data may result in data

inconsistency
• Maintaining data consistency requires mechanisms to

ensure the orderly execution of cooperating processes
• Illustration of the problem:

Suppose that we wanted to provide a solution to the
consumer-producer problem that fills all the buffers.
We can do so by having an integer counter that
keeps track of the number of full buffers. Initially,
counter is set to 0. It is incremented by the
producer after it produces a new buffer and is
decremented by the consumer after it consumes a
buffer.

Producer

while (true) {
/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;
/* do nothing */

buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

Consumer

while (true) {
while (counter == 0)

; /* do nothing */
next_consumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

 counter--;
/* consume the item in next consumed */

}

Race Condition

• counter++ could be implemented as

 register1 = counter
 register1 = register1 + 1
 counter = register1

• counter-- could be implemented as

 register2 = counter
 register2 = register2 - 1
 counter = register2

• Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

Critical Section Problem

• Consider system of n processes {p
0
, p

1
, … p

n-1
}

• Each process has critical section segment of code
– Process may be changing common variables,

updating table, writing file, etc
– When one process in critical section, no other may be

in its critical section
• Critical section problem is to design protocol to

solve this
• Each process must ask permission to enter critical

section in entry section, may follow critical
section with exit section, then remainder section

Critical Section

• General structure of process P
i

Algorithm for Process P
i

do {

while (turn == j);

critical section
turn = j;

remainder section
 } while (true);

Solution to Critical-Section Problem

1. Mutual Exclusion - If process P
i
 is executing in its critical

section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted
⚫ Assume that each process executes at a nonzero speed

⚫ No assumption concerning relative speed of the n processes

Critical-Section Handling in OS

 Two approaches depending on if
kernel is preemptive or non-
preemptive

– Preemptive – allows preemption of
process when running in kernel mode

– Non-preemptive – runs until exits kernel
mode, blocks, or voluntarily yields CPU

•Essentially free of race conditions in kernel
mode

Peterson’s Solution

• Good algorithmic description of solving the
problem

• Two process solution
• Assume that the load and store machine-language

instructions are atomic; that is, cannot be
interrupted

• The two processes share two variables:
– int turn;
– Boolean flag[2]

• The variable turn indicates whose turn it is to enter
the critical section

• The flag array is used to indicate if a process is
ready to enter the critical section. flag[i] = true

implies that process Pi is ready!

Algorithm for Process P
i

do {

flag[i] = true;
turn = j;
while (flag[j] && turn = = j);

critical section
flag[i] = false;

remainder section
 } while (true);

Peterson’s Solution (Cont.)

• Provable that the three CS requirement
are met:

 1. Mutual exclusion is preserved
 Pi enters CS only if:
 either flag[j] = false or
turn = i

 2. Progress requirement is satisfied
 3. Bounded-waiting requirement is met

Synchronization Hardware

• Many systems provide hardware support for
implementing the critical section code.

• All solutions below based on idea of locking
– Protecting critical regions via locks

• Uniprocessors – could disable interrupts
– Currently running code would execute without

preemption
– Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware
instructions

• Atomic = non-interruptible
– Either test memory word and set value
– Or swap contents of two memory words

Solution to Critical-section Problem Using Locks

do {
acquire lock

critical section
release lock

remainder section
} while (TRUE);

test_and_set Instruction

 Definition:
 boolean test_and_set (boolean *target)
 {
 boolean rv = *target;
 *target = TRUE;
 return rv:
 }

1. Executed atomically
2. Returns the original value of passed

parameter
3. Set the new value of passed parameter to

“TRUE”.

Solution using test_and_set()

● Shared Boolean variable lock, initialized to FALSE
● Solution:
 do {
 while (test_and_set(&lock))
 ; /* do nothing */
 /* critical section */
 lock = false;
 /* remainder section */

 } while (true);

compare_and_swap Instruction

Definition:
 int compare _and_swap(int *value, int expected, int new_value) {
 int temp = *value;

 if (*value == expected)
 *value = new_value;
 return temp;
 }

1. Executed atomically
2. Returns the original value of passed parameter

“value”
3. Set the variable “value” the value of the passed

parameter “new_value” but only if “value”
==“expected”. That is, the swap takes place only
under this condition.

Solution using compare_and_swap

• Shared integer “lock” initialized to 0;
• Solution:

 do {
 while (compare_and_swap(&lock, 0, 1) != 0)

 ; /* do nothing */
 /* critical section */
 lock = 0;
 /* remainder section */
 } while (true);

Bounded-waiting Mutual Exclusion with test_and_set

do {
 waiting[i] = true;
 key = true;
 while (waiting[i] && key)
 key = test_and_set(&lock);
 waiting[i] = false;
 /* critical section */
 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j + 1) % n;
 if (j == i)
 lock = false;
 else
 waiting[j] = false;
 /* remainder section */
} while (true);

Mutex Locks

● Previous solutions are complicated and
generally inaccessible to application
programmers

● OS designers build software tools to solve
critical section problem

● Simplest is mutex lock
● Protect a critical section by first acquire() a

lock then release() the lock
● Boolean variable indicating if lock is available or

not
● Calls to acquire() and release() must be atomic

● Usually implemented via hardware atomic
instructions

● But this solution requires busy waiting
● This lock therefore called a spinlock

acquire() and release()

• acquire() {
 while (!available)
 ; /* busy wait */
 available = false;;
 }

• release() {
 available = true;
 }

• do {
 acquire lock
 critical section
 release lock
 remainder section
 } while (true);

Semaphore

• Synchronization tool that provides more sophisticated ways (than Mutex locks) for
process to synchronize their activities.

• Semaphore S – integer variable
• Can only be accessed via two indivisible (atomic) operations

– wait() and signal()
• Originally called P() and V()

• Definition of the wait() operation
wait(S) {
 while (S <= 0)
 ; // busy wait
 S--;
}

• Definition of the signal() operation
signal(S) {
 S++;
}

Semaphore Usage
• Counting semaphore – integer value can range over an unrestricted domain

• Binary semaphore – integer value can range only between 0 and 1

– Same as a mutex lock

• Can solve various synchronization problems

• Consider P
1
 and P

2
 that require S

1
 to happen before S

2

 Create a semaphore “synch” initialized to 0

P1:
 S1;
 signal(synch);
P2:
 wait(synch);

 S2;
• Can implement a counting semaphore S as a binary semaphore

Semaphore Implementation

• Must guarantee that no two processes can execute the
wait() and signal() on the same semaphore at the same
time

• Thus, the implementation becomes the critical section
problem where the wait and signal code are placed in the
critical section
– Could now have busy waiting in critical section

implementation
• But implementation code is short
• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical
sections and therefore this is not a good solution

Semaphore Implementation with no Busy waiting

• With each semaphore there is an associated waiting
queue

• Each entry in a waiting queue has two data items:
– value (of type integer)
– pointer to next record in the list

• Two operations:
– block – place the process invoking the operation on the

appropriate waiting queue
– wakeup – remove one of processes in the waiting queue

and place it in the ready queue
• typedef struct{
 int value;
 struct process *list;
 } semaphore;

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {
 S->value--;
 if (S->value < 0) {
 add this process to S->list;
 block();
 }
}

signal(semaphore *S) {
 S->value++;
 if (S->value <= 0) {
 remove a process P from S->list;
 wakeup(P);
 }
}

Deadlock and Starvation

• Deadlock – two or more processes are waiting
indefinitely for an event that can be caused by
only one of the waiting processes

• Let S and Q be two semaphores initialized to 1
 P

0
 P

1
 wait(S); wait(Q);
 wait(Q); wait(S);

 signal(S); signal(Q);
 signal(Q); signal(S);

• Starvation – indefinite blocking
– A process may never be removed from the semaphore queue in which it is suspended

• Priority Inversion – Scheduling problem when
lower-priority process holds a lock needed by
higher-priority process
– Solved via priority-inheritance protocol

Classical Problems of Synchronization

• Classical problems used to test
newly-proposed synchronization schemes
– Bounded-Buffer Problem

– Readers and Writers Problem

– Dining-Philosophers Problem

Bounded-Buffer Problem

• n buffers, each can hold one item

• Semaphore mutex initialized to the value
1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value
n

Bounded Buffer Problem (Cont.)

• The structure of the producer process

 do {
 ...

 /* produce an item in next_produced */
 ...
 wait(empty);
 wait(mutex);
 ...

 /* add next produced to the buffer */
 ...
 signal(mutex);
 signal(full);
 } while (true);

Bounded Buffer Problem (Cont.)

● The structure of the consumer process

 Do {
 wait(full);
 wait(mutex);
 ...
 /* remove an item from buffer to next_consumed */
 ...
 signal(mutex);
 signal(empty);
 ...
 /* consume the item in next consumed */
 ...
 } while (true);

Readers-Writers Problem

• A data set is shared among a number of concurrent processes
– Readers – only read the data set; they do not perform any updates
– Writers – can both read and write

• Problem – allow multiple readers to read at the same time
– Only one single writer can access the shared data at the same time

• Several variations of how readers and writers are considered –
all involve some form of priorities

• Shared Data
– Data set
– Semaphore rw_mutex initialized to 1
– Semaphore mutex initialized to 1
– Integer read_count initialized to 0

Readers-Writers Problem (Cont.)

• The structure of a writer process

 do {
 wait(rw_mutex);

 ...
 /* writing is performed */

 ...
 signal(rw_mutex);
 } while (true);

Readers-Writers Problem (Cont.)

• The structure of a reader process
 do {

 wait(mutex);
 read_count++;
 if (read_count == 1)

 wait(rw_mutex);
 signal(mutex);
 ...

 /* reading is performed */
 ...
 wait(mutex);

 read count--;
 if (read_count == 0)

 signal(rw_mutex);
 signal(mutex);
 } while (true);

Readers-Writers Problem Variations

• First variation – no reader kept
waiting unless writer has permission
to use shared object

• Second variation – once writer is
ready, it performs the write ASAP

• Both may have starvation leading to
even more variations

• Problem is solved on some systems by
kernel providing reader-writer locks

Dining-Philosophers Problem

• Philosophers spend their lives alternating thinking and eating

• Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks
(one at a time) to eat from bowl

– Need both to eat, then release both when done

• In the case of 5 philosophers

– Shared data

• Bowl of rice (data set)

• Semaphore chopstick [5] initialized to 1

 Dining-Philosophers Problem Algorithm

• The structure of Philosopher i:
do {
 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);
 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

• What is the problem with this
algorithm?

Dining-Philosophers Problem Algorithm (Cont.)

• Deadlock handling
– Allow at most 4 philosophers to be

sitting simultaneously at the table.
– Allow a philosopher to pick up the forks

only if both are available (picking must
be done in a critical section.

– Use an asymmetric solution -- an
odd-numbered philosopher picks up
first the left chopstick and then the right
chopstick. Even-numbered philosopher
picks up first the right chopstick and
then the left chopstick.

Problems with Semaphores

• Incorrect use of semaphore operations:

– signal (mutex) …. wait (mutex)

– wait (mutex) … wait (mutex)

– Omitting of wait (mutex) or signal (mutex)
(or both)

• Deadlock and starvation are possible.

Monitors

• A high-level abstraction that provides a convenient and effective mechanism for
process synchronization

• Abstract data type, internal variables only accessible by code within the
procedure

• Only one process may be active within the monitor at a time
• But not powerful enough to model some synchronization schemes

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

 Initialization code (…) { … }
}

}

Schematic view of a Monitor

Condition Variables

• condition x, y;
• Two operations are allowed on a

condition variable:
– x.wait() – a process that invokes the

operation is suspended until x.signal()

– x.signal() – resumes one of processes (if
any) that invoked x.wait()
• If no x.wait() on the variable, then it has no

effect on the variable

 Monitor with Condition Variables

Condition Variables Choices

• If process P invokes x.signal(), and process Q is
suspended in x.wait(), what should happen next?
– Both Q and P cannot execute in paralel. If Q is resumed, then

P must wait
• Options include

– Signal and wait – P waits until Q either leaves the monitor or
it waits for another condition

– Signal and continue – Q waits until P either leaves the
monitor or it waits for another condition

– Both have pros and cons – language implementer can decide
– Monitors implemented in Concurrent Pascal compromise

• P executing signal immediately leaves the monitor, Q is resumed

– Implemented in other languages including Mesa, C#, Java

Monitor Solution to Dining Philosophers

monitor DiningPhilosophers
{

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self[i].wait;

}

 void putdown (int i) {
 state[i] = THINKING;

 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);

}

Solution to Dining Philosophers (Cont.)

void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;
 self[i].signal () ;
 }

 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }

}

• Each philosopher i invokes the operations
pickup() and putdown() in the following sequence:

 DiningPhilosophers.pickup(i);

 EAT

 DiningPhilosophers.putdown(i);

• No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

Monitor Implementation Using Semaphores

• Variables

 semaphore mutex; // (initially = 1)
 semaphore next; // (initially = 0)
 int next_count = 0;

• Each procedure F will be replaced by

wait(mutex);
 …

 body of F;
 …
if (next_count > 0)

signal(next)
else

signal(mutex);

• Mutual exclusion within a monitor is ensured

Monitor Implementation – Condition Variables

• For each condition variable x, we have:

semaphore x_sem; // (initially = 0)
int x_count = 0;

• The operation x.wait can be implemented as:

x_count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x_count--;

Monitor Implementation (Cont.)

• The operation x.signal can be implemented
as:

if (x_count > 0) {
next_count++;
signal(x_sem);
wait(next);
next_count--;

}

Resuming Processes within a Monitor

• If several processes queued on
condition x, and x.signal() executed,
which should be resumed?

• FCFS frequently not adequate
• conditional-wait construct of the

form x.wait(c)
– Where c is priority number
– Process with lowest number (highest

priority) is scheduled next

• Allocate a single resource among competing
processes using priority numbers that specify the
maximum time a process plans to use the
resource

 R.acquire(t);
 ...
 access the resurce;
 ...

 R.release;

• Where R is an instance of type ResourceAllocator

Single Resource allocation

A Monitor to Allocate Single Resource

monitor ResourceAllocator
{

boolean busy;
condition x;
void acquire(int time) {
if (busy)

x.wait(time);
busy = TRUE;
}
void release() {
busy = FALSE;
x.signal();
}

initialization code() {
 busy = FALSE;
}

}

Synchronization Examples

• Solaris

• Windows

• Linux

• Pthreads

Solaris Synchronization

• Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing

• Uses adaptive mutexes for efficiency when protecting data
from short code segments
– Starts as a standard semaphore spin-lock
– If lock held, and by a thread running on another CPU, spins
– If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

• Uses condition variables
• Uses readers-writers locks when longer sections of code need

access to data
• Uses turnstiles to order the list of threads waiting to acquire

either an adaptive mutex or reader-writer lock
– Turnstiles are per-lock-holding-thread, not per-object

• Priority-inheritance per-turnstile gives the running thread the
highest of the priorities of the threads in its turnstile

Windows Synchronization

• Uses interrupt masks to protect access to global
resources on uniprocessor systems

• Uses spinlocks on multiprocessor systems
– Spinlocking-thread will never be preempted

• Also provides dispatcher objects user-land which
may act mutexes, semaphores, events, and timers
– Events

• An event acts much like a condition variable

– Timers notify one or more thread when time expired
– Dispatcher objects either signaled-state (object

available) or non-signaled state (thread will block)

Linux Synchronization

• Linux:
– Prior to kernel Version 2.6, disables interrupts

to implement short critical sections
– Version 2.6 and later, fully preemptive

• Linux provides:
– Semaphores
– atomic integers
– spinlocks
– reader-writer versions of both

• On single-cpu system, spinlocks replaced by
enabling and disabling kernel preemption

Pthreads Synchronization

• Pthreads API is OS-independent

• It provides:
– mutex locks

– condition variable

• Non-portable extensions include:
– read-write locks

– spinlocks

Alternative Approaches

• Transactional Memory

• OpenMP

• Functional Programming Languages

• A memory transaction is a sequence of
read-write operations to memory that
are performed atomically.

 void update()
 {

/* read/write memory */
 }

Transactional Memory

• OpenMP is a set of compiler directives
and API that support parallel progamming.

 void update(int value)
 {

#pragma omp critical
{

count += value
}

 }

The code contained within the #pragma
omp critical directive is treated as a
critical section and performed atomically.

OpenMP

• Functional programming languages offer a
different paradigm than procedural
languages in that they do not maintain
state.

• Variables are treated as immutable and
cannot change state once they have been
assigned a value.

• There is increasing interest in functional
languages such as Erlang and Scala for
their approach in handling data races.

Functional Programming Languages

