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Objectives

• To present the concept of process 
synchronization.

• To introduce the critical-section problem, 
whose solutions can be used to ensure the 
consistency of shared data

• To present both software and hardware 
solutions of the critical-section problem

• To examine several classical 
process-synchronization problems

• To explore several tools that are used to 
solve process synchronization problems



Background

• Processes can execute concurrently
– May be interrupted at any time, partially completing 

execution
• Concurrent access to shared data may result in data 

inconsistency
• Maintaining data consistency requires mechanisms to 

ensure the orderly execution of cooperating processes
• Illustration of the problem:

Suppose that we wanted to provide a solution to the 
consumer-producer problem that fills all the buffers. 
We can do so by having an integer counter that 
keeps track of the number of full buffers.  Initially, 
counter is set to 0. It is incremented by the 
producer after it produces a new buffer and is 
decremented by the consumer after it consumes a 
buffer.



Producer 

while (true) {
/* produce an item in next produced */ 

while (counter == BUFFER_SIZE) ; 
/* do nothing */ 

buffer[in] = next_produced; 
in = (in + 1) % BUFFER_SIZE; 
counter++; 

} 



Consumer

while (true) {
while (counter == 0) 

; /* do nothing */ 
next_consumed = buffer[out]; 
out = (out + 1) % BUFFER_SIZE; 

        counter--; 
/* consume the item in next consumed */ 

} 



Race Condition

• counter++ could be implemented as

     register1 = counter
     register1 = register1 + 1
     counter = register1

• counter-- could be implemented as

     register2 = counter
     register2 = register2 - 1
     counter = register2

• Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter         {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter        {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}



Critical Section Problem

• Consider system of n processes {p
0
, p

1
, … p

n-1
}

• Each process has critical section segment of code
– Process may be changing common variables, 

updating table, writing file, etc
– When one process in critical section, no other may be 

in its critical section
• Critical section problem is to design protocol to 

solve this
• Each process must ask permission to enter critical 

section in entry section, may follow critical 
section with exit section, then remainder section



Critical Section

• General structure of process P
i  



Algorithm for Process P
i

do { 

while (turn == j); 

critical section 
turn = j; 

remainder section 
 } while (true); 



Solution to Critical-Section Problem

1.   Mutual Exclusion - If process P
i
 is executing in its critical 

section, then no other processes can be executing in their 
critical sections

2.   Progress - If no process is executing in its critical section and 
there exist some processes that wish to enter their critical 
section, then the selection of the processes that will enter the 
critical section next cannot be postponed indefinitely

3.  Bounded Waiting -  A bound must exist on the number of 
times that other processes are allowed to enter their critical 
sections after a process has made a request to enter its 
critical section and before that request is granted
⚫ Assume that each process executes at a nonzero speed 

⚫ No assumption concerning relative speed of the n processes



Critical-Section Handling in OS 

     Two approaches depending on if 
kernel is preemptive or non-  
preemptive 

– Preemptive – allows preemption of 
process when running in kernel mode

– Non-preemptive – runs until exits kernel 
mode, blocks, or voluntarily yields CPU

•Essentially free of race conditions in kernel 
mode



Peterson’s Solution

• Good algorithmic  description of solving the 
problem

• Two process solution
• Assume that the load and store machine-language 

instructions are atomic; that is, cannot be 
interrupted

• The two processes share two variables:
– int turn; 
– Boolean flag[2]

• The variable turn indicates whose turn it is to enter 
the critical section

• The flag array is used to indicate if a process is 
ready to enter the critical section. flag[i] = true  

implies that process Pi is ready!



Algorithm for Process P
i

do { 

flag[i] = true; 
turn = j; 
while (flag[j] && turn = = j); 

critical section 
flag[i] = false; 

remainder section 
 } while (true); 



Peterson’s Solution (Cont.)

• Provable that the three  CS requirement 
are met:

        1.   Mutual exclusion is preserved
                Pi enters CS only if:
                      either flag[j] = false or 
turn = i

        2.   Progress requirement is satisfied
        3.   Bounded-waiting requirement is met



Synchronization Hardware

• Many systems provide hardware support for 
implementing the critical section code.

• All solutions below based on idea of locking
– Protecting critical regions via locks

• Uniprocessors – could disable interrupts
– Currently running code would execute without 

preemption
– Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware 
instructions

• Atomic = non-interruptible
– Either test memory word and set value
– Or swap contents of two memory words



Solution to Critical-section Problem Using Locks

do { 
acquire lock 

critical section 
release lock 

remainder section 
} while (TRUE); 



test_and_set  Instruction 

   Definition:
       boolean test_and_set (boolean *target)
          {
               boolean rv = *target;
               *target = TRUE;
               return rv:
          }

1. Executed atomically
2. Returns the original value of passed 

parameter
3. Set the new value of passed parameter to 

“TRUE”.



Solution using test_and_set()

● Shared Boolean variable lock, initialized to FALSE
● Solution:
       do {
          while (test_and_set(&lock)) 
             ; /* do nothing */ 
                 /* critical section */ 
          lock = false; 
                 /* remainder section */ 

       } while (true); 

               



compare_and_swap Instruction

Definition:
     int compare _and_swap(int *value, int expected, int new_value) { 
         int temp = *value; 

         if (*value == expected) 
            *value = new_value; 
      return temp; 
     } 

1. Executed atomically
2. Returns the original value of passed parameter 

“value”
3. Set  the variable “value”  the value of the passed 

parameter “new_value” but only if “value” 
==“expected”. That is, the swap takes place only 
under this condition.



Solution using compare_and_swap

• Shared integer  “lock”  initialized to 0; 
• Solution:

      do {
         while (compare_and_swap(&lock, 0, 1) != 0) 

            ; /* do nothing */ 
          /* critical section */ 
       lock = 0; 
          /* remainder section */ 
      } while (true); 
               



Bounded-waiting Mutual Exclusion with test_and_set

do {
   waiting[i] = true;
   key = true;
   while (waiting[i] && key) 
      key = test_and_set(&lock); 
   waiting[i] = false; 
   /* critical section */ 
   j = (i + 1) % n; 
   while ((j != i) && !waiting[j]) 
      j = (j + 1) % n; 
   if (j == i) 
      lock = false; 
   else 
      waiting[j] = false; 
   /* remainder section */ 
} while (true); 



Mutex Locks

● Previous solutions are complicated and 
generally inaccessible to application 
programmers

● OS designers build software tools to solve 
critical section problem

● Simplest is mutex lock
● Protect a critical section  by first acquire() a 

lock then release() the lock
● Boolean variable indicating if lock is available or 

not
● Calls to acquire() and release() must be atomic

● Usually implemented via hardware atomic 
instructions

● But this solution requires busy waiting
● This lock therefore called a spinlock



acquire() and release()

•   acquire() {
       while (!available) 
          ; /* busy wait */ 
       available = false;; 
    } 

•   release() { 
       available = true; 
    } 

•   do { 
    acquire lock
       critical section
    release lock 
      remainder section 
 } while (true); 



Semaphore

• Synchronization tool that provides more sophisticated ways (than Mutex locks)  for 
process to synchronize their activities.

• Semaphore S – integer variable
• Can only be accessed via two indivisible (atomic) operations

– wait() and signal()
• Originally called P() and V()

• Definition of  the wait() operation
wait(S) { 
    while (S <= 0)
       ; // busy wait
    S--;
}

• Definition of  the signal() operation
signal(S) { 
    S++;
}



Semaphore Usage
• Counting semaphore – integer value can range over an unrestricted domain

• Binary semaphore – integer value can range only between 0 and 1

– Same as a mutex lock

• Can solve various synchronization problems

• Consider P
1
  and P

2
 that require S

1
 to happen before S

2

       Create a semaphore “synch” initialized to 0 

P1:
   S1;
   signal(synch);
P2:
   wait(synch);

   S2;
• Can implement a counting semaphore S as a binary semaphore



Semaphore Implementation

• Must guarantee that no two processes can execute  the 
wait() and signal() on the same semaphore at the same 
time

• Thus, the implementation becomes the critical section 
problem where the wait and signal code are placed in the 
critical section
– Could now have busy waiting in critical section 

implementation
• But implementation code is short
• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical 
sections and therefore this is not a good solution

 



Semaphore Implementation with no Busy waiting 

• With each semaphore there is an associated waiting 
queue

• Each entry in a waiting queue has two data items:
–  value (of type integer)
–  pointer to next record in the list

• Two operations:
– block – place the process invoking the operation on the 

appropriate waiting queue
– wakeup – remove one of processes in the waiting queue 

and place it in the ready queue
• typedef struct{ 
   int value; 
   struct process *list; 
   } semaphore; 

                        



Implementation with no Busy waiting (Cont.)

wait(semaphore *S) { 
   S->value--; 
   if (S->value < 0) {
      add this process to S->list; 
      block(); 
   } 
}

signal(semaphore *S) { 
   S->value++; 
   if (S->value <= 0) {
      remove a process P from S->list; 
      wakeup(P); 
   } 
} 



Deadlock and Starvation

• Deadlock – two or more processes are waiting 
indefinitely for an event that can be caused by 
only one of the waiting processes

• Let S and Q be two semaphores initialized to 1
        P

0
                            P

1
          wait(S);               wait(Q);
           wait(Q);               wait(S);
 ...      ...

           signal(S);                 signal(Q);
              signal(Q);                 signal(S);

• Starvation – indefinite blocking  
– A process may never be removed from the semaphore queue in which it is suspended

• Priority Inversion – Scheduling problem when 
lower-priority process holds a lock needed by 
higher-priority process
– Solved via priority-inheritance protocol



Classical Problems of Synchronization

• Classical problems used to test 
newly-proposed synchronization schemes
– Bounded-Buffer Problem

– Readers and Writers Problem

– Dining-Philosophers Problem



Bounded-Buffer Problem

• n buffers, each can hold one item

• Semaphore mutex initialized to the value 
1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value 
n



Bounded Buffer Problem (Cont.)

• The structure of the producer process

     do { 
          ...

        /* produce an item in next_produced */ 
          ... 
        wait(empty); 
        wait(mutex); 
           ...

        /* add next produced to the buffer */ 
           ... 
        signal(mutex); 
        signal(full); 
     } while (true);



Bounded Buffer Problem (Cont.)

● The structure of the consumer process

     Do { 
        wait(full); 
        wait(mutex); 
           ...
        /* remove an item from buffer to next_consumed */ 
           ... 
        signal(mutex); 
        signal(empty); 
           ...
        /* consume the item in next consumed */ 
           ...
     } while (true); 



Readers-Writers Problem

• A data set is shared among a number of concurrent processes
– Readers – only read the data set; they do not perform any updates
– Writers   – can both read and write

• Problem – allow multiple readers to read at the same time
– Only one single writer can access the shared data at the same time

• Several variations of how readers and writers are considered  – 
all involve some form of priorities

• Shared Data
– Data set
– Semaphore rw_mutex initialized to 1
– Semaphore mutex initialized to 1
– Integer read_count initialized to 0



Readers-Writers Problem (Cont.)

• The structure of a writer process

        

       do {
          wait(rw_mutex); 

               ...
          /* writing is performed */ 

               ... 
          signal(rw_mutex); 
     } while (true);

       



Readers-Writers Problem (Cont.)

• The structure of a reader process
       do {

           wait(mutex);
           read_count++;
           if (read_count == 1) 

              wait(rw_mutex); 
           signal(mutex); 
               ...

           /* reading is performed */ 
               ... 
           wait(mutex);

           read count--;
           if (read_count == 0) 

           signal(rw_mutex); 
           signal(mutex); 
       } while (true);

       



Readers-Writers Problem Variations

• First  variation – no reader kept 
waiting unless writer has permission 
to use shared object

• Second variation – once writer is 
ready, it performs the write ASAP

• Both may have starvation leading to 
even more variations

• Problem is solved on some systems by 
kernel providing reader-writer locks



Dining-Philosophers Problem

• Philosophers spend their lives alternating thinking and eating

• Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks 
(one at a time) to eat from bowl

– Need both to eat, then release both when done

• In the case of 5 philosophers

– Shared data 

• Bowl of rice (data set)

• Semaphore chopstick [5] initialized to 1



  Dining-Philosophers Problem Algorithm

• The structure of Philosopher i:
do { 
    wait (chopstick[i] );

  wait (chopStick[ (i + 1) % 5] );

             //  eat

  signal (chopstick[i] );
  signal (chopstick[ (i + 1) % 5] );

                 //  think

} while (TRUE);

•   What is the problem with this 
algorithm?



Dining-Philosophers Problem Algorithm (Cont.)

• Deadlock handling
–  Allow at most 4 philosophers to be 

sitting simultaneously at  the table.
–  Allow a philosopher to pick up  the forks 

only if both are available (picking must 
be done in a critical section.

–  Use an asymmetric solution  -- an 
odd-numbered  philosopher picks  up 
first the left chopstick and then the right 
chopstick. Even-numbered  philosopher 
picks  up first the right chopstick and 
then the left chopstick. 



Problems with Semaphores

•  Incorrect use of semaphore operations:

–  signal (mutex)  ….  wait (mutex)

–  wait (mutex)  …  wait (mutex)

–  Omitting  of wait (mutex) or signal (mutex) 
(or both)

• Deadlock and starvation are possible.



Monitors

• A high-level abstraction that provides a convenient and effective mechanism for 
process synchronization

• Abstract data type, internal variables only accessible by code within the 
procedure

• Only one process may be active within the monitor at a time
• But not powerful enough to model some synchronization schemes

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

    Initialization code (…) { … }
}

}



Schematic view of a Monitor



Condition Variables

• condition x, y;
• Two operations are allowed on a 

condition variable:
– x.wait() –  a process that invokes the 

operation is suspended until x.signal() 

– x.signal() – resumes one of processes (if 
any) that  invoked x.wait()
• If no x.wait() on the variable, then it has no 

effect on the variable



 Monitor with Condition Variables



Condition Variables Choices

• If process P invokes x.signal(), and process Q is 
suspended in x.wait(), what should happen next?
– Both Q and P cannot execute in paralel. If Q is resumed, then 

P must wait
• Options include

– Signal and wait – P waits until Q either leaves the monitor or 
it waits for another condition

– Signal and continue – Q waits until P either leaves the 
monitor or it  waits for another condition

– Both have pros and cons – language implementer can decide
– Monitors implemented in Concurrent Pascal compromise

• P executing signal immediately leaves the monitor, Q is resumed

– Implemented in other languages including Mesa, C#, Java



Monitor Solution to Dining Philosophers

monitor DiningPhilosophers
{ 

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) { 
       state[i] = HUNGRY;
       test(i);
       if (state[i] != EATING) self[i].wait;

}

   void putdown (int i) { 
       state[i] = THINKING;

                   // test left and right neighbors
        test((i + 4) % 5);
        test((i + 1) % 5);

}



Solution to Dining Philosophers (Cont.)

void test (int i) { 
        if ((state[(i + 4) % 5] != EATING) &&
        (state[i] == HUNGRY) &&
        (state[(i + 1) % 5] != EATING) ) { 
             state[i] = EATING ;
    self[i].signal () ;
        }

   }

       initialization_code() { 
       for (int i = 0; i < 5; i++)
       state[i] = THINKING;
     }

}



• Each philosopher i invokes the operations 
pickup() and putdown() in the following sequence:

              DiningPhilosophers.pickup(i);

                   EAT

              DiningPhilosophers.putdown(i);

• No deadlock, but starvation is possible

       

Solution to Dining Philosophers (Cont.)



Monitor Implementation Using Semaphores

• Variables 

 semaphore mutex;  // (initially  = 1)
 semaphore next;   // (initially  = 0)
 int next_count = 0;

• Each procedure F  will be replaced by

wait(mutex);
     …  

                    body of F;
     …
if (next_count > 0)

signal(next)
else 

signal(mutex);

• Mutual exclusion within a monitor is ensured



Monitor Implementation – Condition Variables

• For each condition variable x, we  have:

semaphore x_sem; // (initially  = 0)
int x_count = 0;

• The operation x.wait can be implemented as:

x_count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x_count--;



Monitor Implementation (Cont.)

• The operation x.signal can be implemented 
as:

if (x_count > 0) {
next_count++;
signal(x_sem);
wait(next);
next_count--;

}



Resuming Processes within a Monitor

• If several processes queued on 
condition x, and x.signal() executed, 
which should be resumed?

• FCFS frequently not adequate 
• conditional-wait construct of the 

form x.wait(c)
– Where c is priority number
– Process with lowest number (highest 

priority) is scheduled next



• Allocate a single resource among competing 
processes using priority numbers that specify the 
maximum time a process  plans to use the 
resource

              R.acquire(t);
                   ...
                access the resurce;
                   ...

               R.release;

• Where R is an instance of  type ResourceAllocator

       

Single Resource allocation 



A Monitor to Allocate Single Resource

monitor ResourceAllocator 
{ 

boolean busy; 
condition x; 
void acquire(int time) { 
if (busy) 

x.wait(time); 
busy = TRUE; 
} 
void release() { 
busy = FALSE; 
x.signal(); 
} 

initialization code() {
 busy = FALSE; 
}

}



Synchronization Examples

• Solaris

• Windows

• Linux

• Pthreads



Solaris Synchronization

• Implements a variety of locks to support multitasking, 
multithreading (including real-time threads), and 
multiprocessing

• Uses adaptive mutexes for efficiency when protecting data 
from short code segments
– Starts as a standard semaphore spin-lock
– If lock held, and by a thread running on another CPU, spins
– If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

• Uses condition variables 
• Uses readers-writers locks when longer sections of code need 

access to data
• Uses turnstiles to order the list of threads waiting to acquire 

either an adaptive mutex or reader-writer lock
– Turnstiles are per-lock-holding-thread, not per-object

• Priority-inheritance per-turnstile gives the running thread the 
highest of the priorities of the threads in its turnstile



Windows Synchronization

• Uses interrupt masks to protect access to global 
resources on uniprocessor systems

• Uses spinlocks on multiprocessor systems
– Spinlocking-thread will never be preempted

• Also provides dispatcher objects user-land which 
may act mutexes, semaphores, events, and timers
– Events

• An event acts much like a condition variable

– Timers notify one or more thread when time expired
– Dispatcher objects either signaled-state (object 

available) or non-signaled state (thread will block)



Linux Synchronization

• Linux:
– Prior to kernel Version 2.6, disables interrupts 

to implement short critical sections
– Version 2.6 and later, fully preemptive

• Linux provides:
– Semaphores
– atomic integers
– spinlocks
– reader-writer versions of both

• On single-cpu system, spinlocks replaced by 
enabling and disabling kernel preemption



Pthreads Synchronization

• Pthreads API is OS-independent

• It provides:
– mutex locks

– condition variable

• Non-portable extensions include:
– read-write locks

– spinlocks



Alternative Approaches

• Transactional Memory

• OpenMP

• Functional Programming Languages



• A memory transaction is a sequence of 
read-write operations to memory that 
are performed atomically.

              void update()
 {

/* read/write memory */
  }

Transactional Memory



• OpenMP is a set of compiler directives 
and API that support parallel progamming.

              void update(int value)
 {

#pragma omp critical
{

count += value
}

  }

The code contained within the #pragma 
omp critical directive is treated as a 
critical section and performed atomically.

OpenMP



• Functional programming languages offer a 
different paradigm than procedural 
languages in that they do not maintain 
state. 

• Variables are treated as immutable and 
cannot change state once they have been 
assigned a value.

• There is increasing interest in functional 
languages such as Erlang and Scala for 
their approach in handling data races.

              

Functional Programming Languages


