
SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

19CSB303 and Composing Mobile Apps
UNIT 2

App functionality beyond user interface- Services -

states and lifecycle

Android - Services

A service is a component that runs in the background to perform long-running operations

without needing to interact with the user and it works even if application is destroyed. A service

can essentially take two states −

Sr.No. State & Description

1

Started

A service is started when an application component, such as an activity, starts it by

calling startService(). Once started, a service can run in the background indefinitely, even

if the component that started it is destroyed.

2

Bound

A service is bound when an application component binds to it by calling bindService().

A bound service offers a client-server interface that allows components to interact with

the service, send requests, get results, and even do so across processes with interprocess

communication (IPC).

A service has life cycle callback methods that you can implement to monitor changes in the

service's state and you can perform work at the appropriate stage. The following diagram on the

left shows the life cycle when the service is created with startService() and the diagram on the

right shows the life cycle when the service is created with bindService(): (image courtesy :

android.com)

To create an service, you create a Java class that extends the Service base class or one of its

existing subclasses. The Service base class defines various callback methods and the most

important are given below. You don't need to implement all the callbacks methods. However, it's

important that you understand each one and implement those that ensure your app behaves the

way users expect.

Sr.No. Callback & Description

1

onStartCommand()

The system calls this method when another component, such as an activity, requests that

the service be started, by calling startService(). If you implement this method, it is your

responsibility to stop the service when its work is done, by calling stopSelf() or

stopService() methods.

2

onBind()

The system calls this method when another component wants to bind with the service by

calling bindService(). If you implement this method, you must provide an interface that

clients use to communicate with the service, by returning an IBinder object. You must

always implement this method, but if you don't want to allow binding, then you should

return null.

3

onUnbind()

The system calls this method when all clients have disconnected from a particular

interface published by the service.

4

onRebind()

The system calls this method when new clients have connected to the service, after it had

previously been notified that all had disconnected in its onUnbind(Intent).

5

onCreate()

The system calls this method when the service is first created using onStartCommand()

or onBind(). This call is required to perform one-time set-up.

6

onDestroy()

The system calls this method when the service is no longer used and is being destroyed.

Your service should implement this to clean up any resources such as threads, registered

listeners, receivers, etc.

The following skeleton service demonstrates each of the life cycle methods −

package com.tutorialspoint;

import android.app.Service;

import android.os.IBinder;

import android.content.Intent;

import android.os.Bundle;

public class HelloService extends Service {

 /** indicates how to behave if the service is killed */

 int mStartMode;

 /** interface for clients that bind */

 IBinder mBinder;

 /** indicates whether onRebind should be used */

 boolean mAllowRebind;

 /** Called when the service is being created. */

 @Override

 public void onCreate() {

 }

 /** The service is starting, due to a call to startService() */

 @Override

 public int onStartCommand(Intent intent, int flags, int startId) {

 return mStartMode;

 }

 /** A client is binding to the service with bindService() */

 @Override

 public IBinder onBind(Intent intent) {

 return mBinder;

 }

 /** Called when all clients have unbound with unbindService() */

 @Override

 public boolean onUnbind(Intent intent) {

 return mAllowRebind;

 }

 /** Called when a client is binding to the service with bindService()*/

 @Override

 public void onRebind(Intent intent) {

 }

 /** Called when The service is no longer used and is being destroyed */

 @Override

 public void onDestroy() {

	Android - Services

