

SNS COLLEGE OF TECHNOLOGY

Coimbatore – 641 029 **An Autonomous Institution**

DEPARTMENT OF CIVIL ENGINEERING

ENVIRONMENTAL ENGINEERING

III YEAR / V SEMESTER

UNIT 1 : SOURCES, QUALITY AND DEMAND OF WATER

Topic 4: Population forecast

ENVIRONMENTAL ENGINEERING/R.PRIYA/CIVIL/SNSCT

UNIT 1 :SOURCES, QUALITY AND DEMAND OF WATER

- 1. Importance and necessity of water supply Engineering Sources of water Suitability of water -Choice of source
- 2. Types of demand –– Computation of quantity of water
- **3.** Fluctuation in demand Factors affecting demand
- 4. Population forecast
- 5. Population forecast Methods
- Impurities in water– Collection of water sample 6.
- 7. Physical test
- 8. Chemical test
- 9. Biological test and Standards of quality of water

POPULATION FORECASTING

The present population of city is determined by conducting an official enumeration, called census.

a) Births b) Deaths c) Migrations.

The various methods adopted for estimating future populations

Population growth

POPULATION GROWTH CURVE

ENVIRONMENTAL ENGINEERING/R.PRIYA/CIVIL/SNSCT

4/13

POPULATION FORECAST

Arithmetical Increase method

Geometric **Increase Method**

Decreasing Rate of Growth Method

Graphical Extension Method

Zoning or Master Plan Method

Ratio or Correlation Method

Incremental **Increase Method**

Graphical Comparison Method

Growth Composition Analysis Method

METHODS OF POPULATION FORECASTING

1. ARITHMETIC INCREASE METHOD

- Rate of change of population with time is constant.
- Applicable to old and large cities
- Also applicable to cities with no industrial growth and reached a saturation or max. development
- Yields lower results for rapidly growing cities $P_n = (P_0 + n. \ \overline{x})$

Where, $P_0 = latest$ known population

 P_n = Prospective population after 'n' decades x = avg. increase in population per decade

$\begin{array}{l} \text{onstant.} \\ \text{growth and reached} \\ \text{es} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \text{es} \\ \text{x} = \text{avg. increase} \end{array} \end{array}$

1. The population of town for the last four census years was recorded as below. Determine the population in 2021 by using Arithmetic Increase Method:

Census	Population
1981	11092
1991	13751
2001	15206
2011	19723

1. The population of town for the last four census years was recorded as below. Determine the population in 2021 by using Arithmetic Increase Method:

Census	Population	Increase in Population
1981	11092	
1991	13751	2659
2001	15206	1455
2011	19723	4517

Sol.: Avg. increase in population per decade (x) = 8631/3 = 2877 $P_n = (P_0 + n \cdot x)$

 $P_n = (19723 + 1 \times 2877) = 22600$

2. GEOMETRIC INCREASE METHOD

- % increase in population from decade to decade is constant.
- Avg. % of growth of last few decades is determined and from this forecasting is done.

$$P_n = P_0 (1 + (r / 100))^n$$

Where, $P_0 = latest$ known population

 $P_n = Prospective population after 'n' decades r =$

	2. The population of town for the last four census years wa Determine the population in 2021 by using Geometric			
Census	Population	Increase in Population	%	inc
1981	11092			
1991	13751	2659		
2001	15206	1455		
2011	19723	4517		

Sol.: Avg. % increase in population per decade (r) = 64.25/3 = 21.42%

Geometric Mean % in population in decade (r) = $(23.97 * 10.58 * 29.70)^{1/3} = 19.6\%$ $Pn = Po \left[1 + \left(\frac{r}{100}\right)\right]^n$

 $Pn = 19723 \left[1 + \left(\frac{19.6}{100} \right) \right]^{1}$

Pn = 23589

as recorded as below. **Increase Method:**

crease in population

23.97 10.58 29.70

METHODS OF POPULATION FORECASTING

3. INCREAMENTAL INCREASE METHOD

- Best method for any city whether old or new.
- Combination of first two methods.
- First the avg. of increase in population is calculated according to arithmetical increase method
- Then the avg. of the net increment increase is added to this.
- $Pn = Po + n \cdot x + ((n(n+1))/2)y)$
- Where, Po = latest known population
- Pn = Prospective population after 'n' decades
- y = avg. of incremental increase in population

3. The population of town for the last four census years was recorded as below. Determine the population in 2021 by using Incremental Increase Method:

Census	Population	Increase in Population	Ι
1981	11092		
1991	13751	2659	
2001	15206	1455	
2011	19723	4517	

Sol.: Avg. increase in population per decade (x) = 8631/3 = 2877

Avg. incremental increase in population per decade (y) = 1858/2 = 929 $Pn = Po + n \cdot x + \begin{bmatrix} (n(n+1)) \\ 2 \end{bmatrix} y$

Pn = 19723 +
$$1X2877$$
 +) $\left[\frac{(1(1+1))}{2}\right]$ 929

$$Pn = 23529$$

Incremental increase

-1204 3062

12/13

4. The population of the city are as below.

Year	Population	
1941	20,000	
1951	25,000	
1961	35,000	
1971	45,000	
1981	55,000	
1991	65,000	
2001	75,000	HOME
2011	85,000	

Determine the population in 2021 by using Arithmetic Increase, Geometric and Increase Method:

13/13

References

- https://nptel.ac.in/content/storage2/courses/105104102/Lecture%202.htm
- https://theconstructor.org/environmental-engg/population-forecasting- \bullet water-supply-system/38548/
- https://www.aboutcivil.org/estimation-of-water-demand-populationforecasting.html

Thank You

ENVIRONMENTAL ENGINEERING/R.PRIYA/CIVIL/SNSCT

