

# SNS COLLEGE OF TECHNOLOGY

### Coimbatore – 641 029 **An Autonomous Institution**

# **DEPARTMENT OF CIVIL ENGINEERING**

### **ENVIRONMENTAL ENGINEERING**

### II YEAR / IV SEMESTER

### **UNIT 1 : SOURCES, QUALITY AND DEMAND OF WATER**

### **Topic 6 : Physical Test**







# **UNIT 1 : SOURCES, QUALITY AND DEMAND OF WATER**

- 1. Importance and necessity of water supply Engineering Sources of water Suitability of water -Choice of source
- 2. Types of demand –– Computation of quantity of water
- **3.** Fluctuation in demand Factors affecting demand
- **Population forecast** 4.
- 5. Population forecast Methods
- Impurities in water– Collection of water sample 6.
- 7. Physical test
- 8. Chemical test
- 9. Biological test and Standards of quality of water





# **Physical test of water**







### Turbidity test



### Specific Conductivity of water



# **Colour test**

### **Green color- copper leaching**

### **Red color – Rust from iron pipes**

### **Brown color – Organic compounds like tannin**











# **Colour Test**

Colour of water can be measured against various standards scales or tubes(Nessler) such as

- Hazen or Platinic chloride scale
- Burgess scale or cobalt scale

# Colour of water is measured by Tintometer

The standard unit of colour is that produced by one milligram of platinum cobalt in one litre of distilled water.





# **Acceptable limit of water(Cobalt unit)**







# **Colour of water**



Apparent colorcolor of the whole water sample (dissolved + suspended solids)









True Color- color measured after filtering the suspended solids







# **Measurement of odour and taste**



### **THRESHOLD NUMBER SHOULD NOT BE MORE THAN 3**

ENVIRONMENTAL ENGINEERING/R.PRIYA/CIVIL/SNSCT





# **Measurement of odour and taste**

| Sample Volume<br>Diluted to 200 mL | Threshold Odor<br>Number (TON) | Sample Volume<br>Diluted to 200<br>mL | Threshold Odor<br>Number (TON) |
|------------------------------------|--------------------------------|---------------------------------------|--------------------------------|
| 200                                | 1                              | 8.3                                   | 24                             |
| 100                                | 2                              | 5.7                                   | 35                             |
| 70                                 | 3                              | 4                                     | 50                             |
| 50                                 | 4                              | 2.8                                   | 70                             |
| 35                                 | 6                              | 2                                     | 100                            |
| 25                                 | 8                              | 1.4                                   | 140                            |
| 17                                 | 12                             | 1                                     | 200                            |

**Threshold Odor Numbers- How They Are Determined** 

$$TON = (A + B)/A$$

A - Volume of Sample with odor

**B** - Volume of Pure Water with no odor Added

If A was a 100 ml sample and 100 ml of water had to be added to not detect the odor - the TON would be 2.

$$TON = (100 + 100) / 100 = 2$$







• Distinct odour, readily detectable by most people.

### • Extremely strong odour.



# Temperature

The temperature of water depends on the depth from which it is drawn.

### The desirable temperature of potable water is 10°C

Determination of the saturation values of solids and gases



### Temperature of 25°C is considered to be objectionable.



# **Measurement of Temperature**



## Thermometer

### Broken Capillary thermometer





# Thermocouple



## Haziness of fluid due to particulates invisible to naked eyes.

**AESTHETIC ISSUES** deeper depths. organisms.

### CAUSE

• Phytoplanktons, sediments through storm water runoff, quarrying, mining.



- Reduce light penetration into
- Affects growth of aquatic



# **Turbidity Rod**







POSITION OF

GRADUATED TAPE

GRADUATED

RING

# **Turbidimeters**





Jackson's Turbidimeter





# **BaylisTurbidimeter**





# Nephelometer











•Conductivity is a measure of water's capability to pass electrical flow.

•This ability is directly related to the concentration of ions in the water.

- These conductive ions come from dissolved salts and inorganic materials such as alkalis, chlorides, sulfides and carbonate compounds.
- Compounds that dissolve into ions are also known as electrolytes.
- The more ions that are present, the higher the conductivity of water.









# What is the permissible limit of colour?







