

SNS COLLEGE OF TECHNOLOGY

Coimbatore – 641 029 **An Autonomous Institution**

DEPARTMENT OF CIVIL ENGINEERING

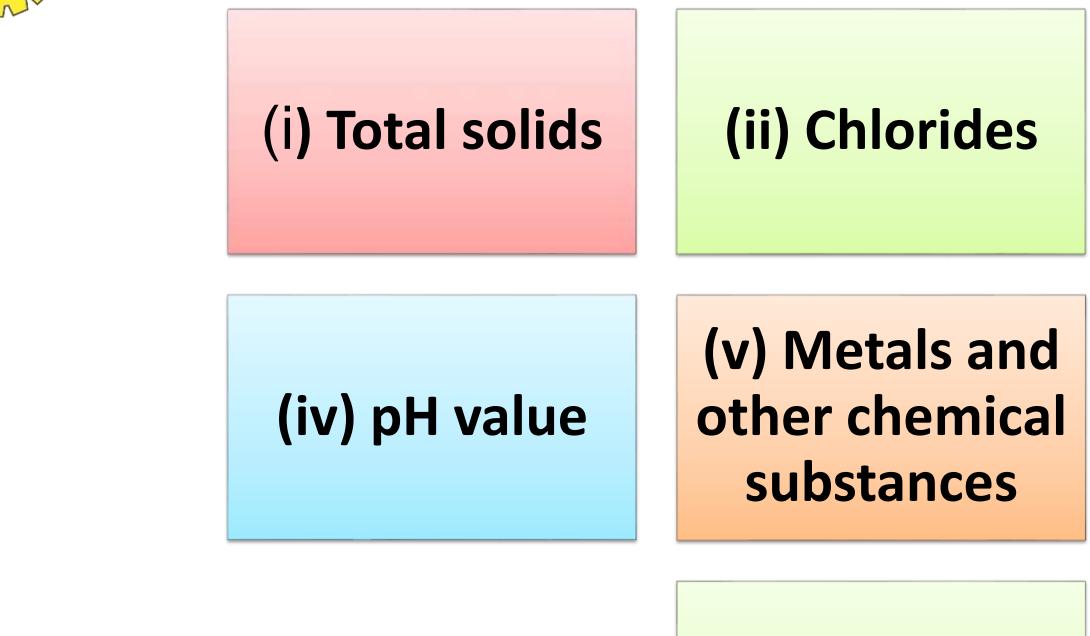
ENVIRONMENTAL ENGINEERING

II YEAR / IV SEMESTER

UNIT 1 : SOURCES, QUALITY AND DEMAND OF WATER

Topic 6 : Chemical Test

ENVIRONMENTAL ENGINEERING/R.PRIYS/CIVIL/SNSCT


UNIT 1 : SOURCES, QUALITY AND DEMAND OF WATER

- 1. Importance and necessity of water supply Engineering Sources of water Suitability of water -Choice of source
- 2. Types of demand –– Computation of quantity of water
- **3.** Fluctuation in demand Factors affecting demand
- **Population forecast** 4.
- 5. Population forecast Methods
- Impurities in water– Collection of water sample 6.
- 7. Physical test
- 8. Chemical test
- 9. Biological test and Standards of quality of water

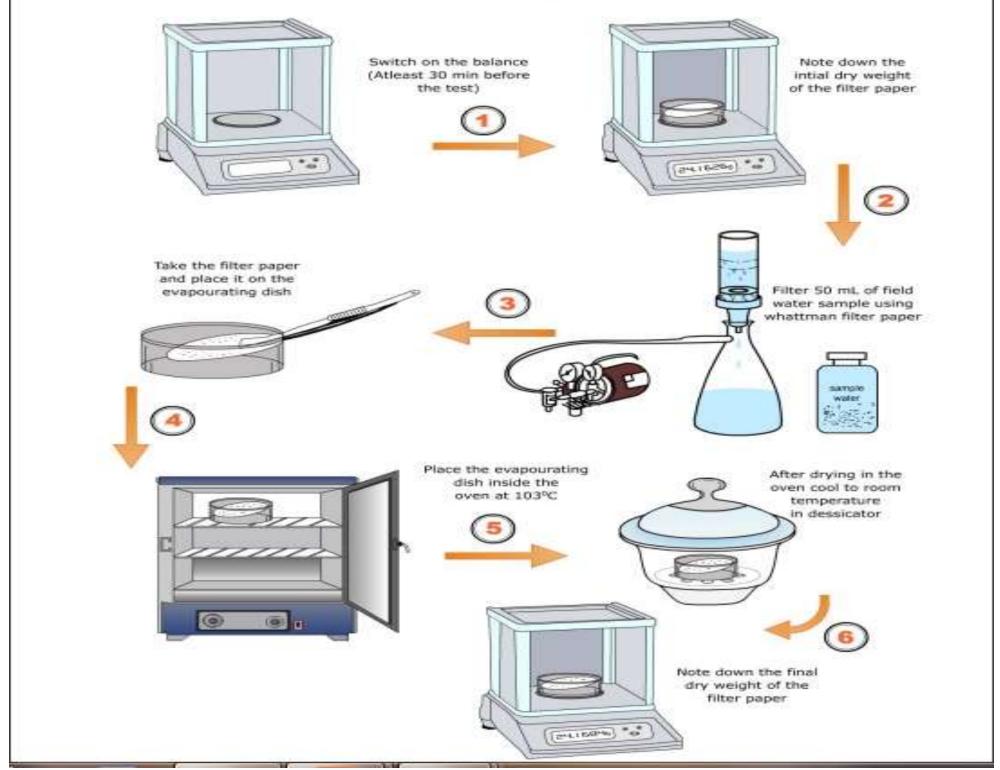
Chemical test of water

(vii) Dissolved gases.

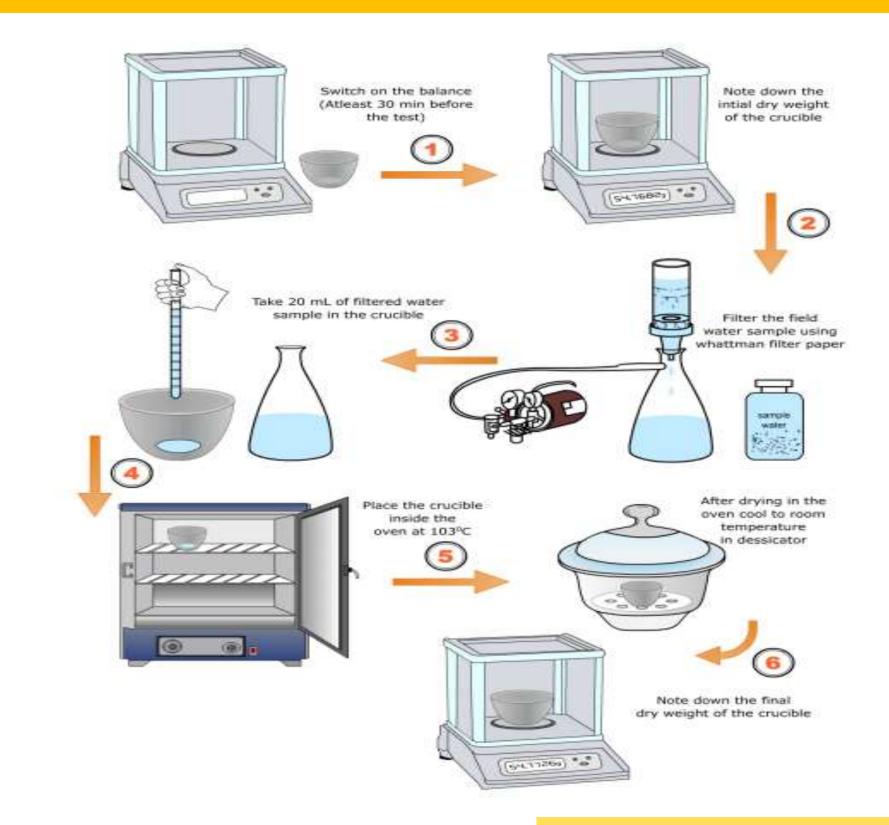
(iii) Hardness

(vi) Nitrogen and its compounds.

Total Solids



Determination of Suspended Solid



Suspended Solid (mg/L) = [(W₂-W₁) x 1000] / volume of sample Where: W₂ = weight of filter paper + suspended matter **W**₁= weight of filter paper

Determination of Total Dissolved Solid

Total dissolved Solid (mg/L) =[(W₂-W₁)x 1000] / volume of sample Where: W₁= Empty weight of crucible W₂= weight of crucible + weight of residue

Determination of fixed Solid

The total solids obtained by filtering and evaporating are kept in the platinum dish and held over a Bunsen flame

Every part of solids is raised to a bright red heat.

The organic matter is burnt off in this process and only inorganic matter left behind.

The dish is cooled, and weight of the matter remaining behind give the amount of 'fixed solids' which can be expressed in p.p.m.

pH

- If H+ concentration increases, pH decreases and then it will be acidic.
- If H+ concentration decreases, pH increases and then it will be alkaline.
- pH + pOH = 14
- If the pH of water is more than 7, it will be alkaline and if it is less than 7, it will be acidic.
- The alkalinity is caused by the presence of bicarbonate of calcium and magnesium or by the carbonates of hydroxides of sodium, potassium, calcium and magnesium.

$$pH = -\log[H^+] = \log\left[\frac{1}{H^+}\right]$$

Measurement of pH

- The pH value of water can be measured quickly and automatically with the help of a **Potentiometer**.
- The pH can also be measured by indicators as given below:

Indicator	pH range of indicator dye	Original color	Final color produced
Methyl orange	2.8 - 4.4	Red	Yellow
Methyl red	4.4 - 6.2	Red	Yellow
Phenol red	6.8 - 8.4	Yellow	Red
Phenolphthalein	8.6 – 10.3	Yellow	Red

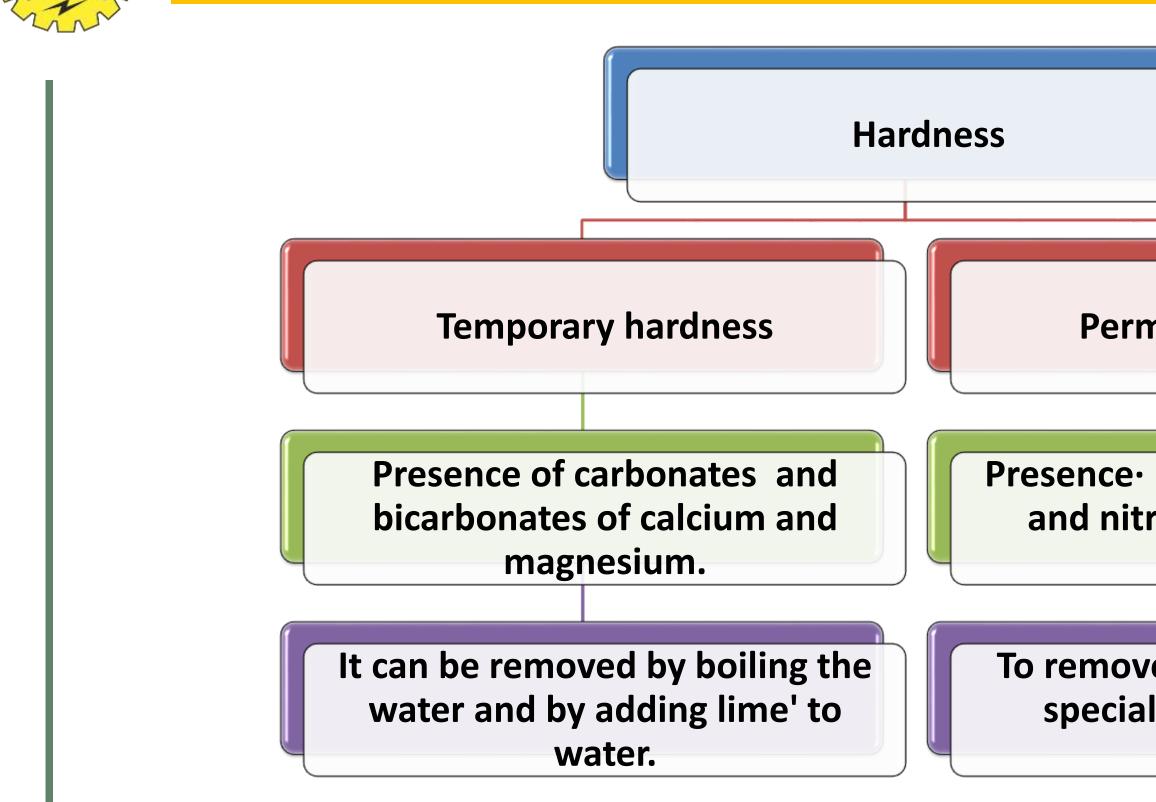
Chloride

Chlorides are estimated by titration with standard silver nitrate solution using potassium chromate as indicator

ml of water 25 sample and distilled water is taken in conical separate flask

Note the amount of titrant is used for colour change from yellow to red

drops 10 Of potassium chromate solution is added both the to conical flask



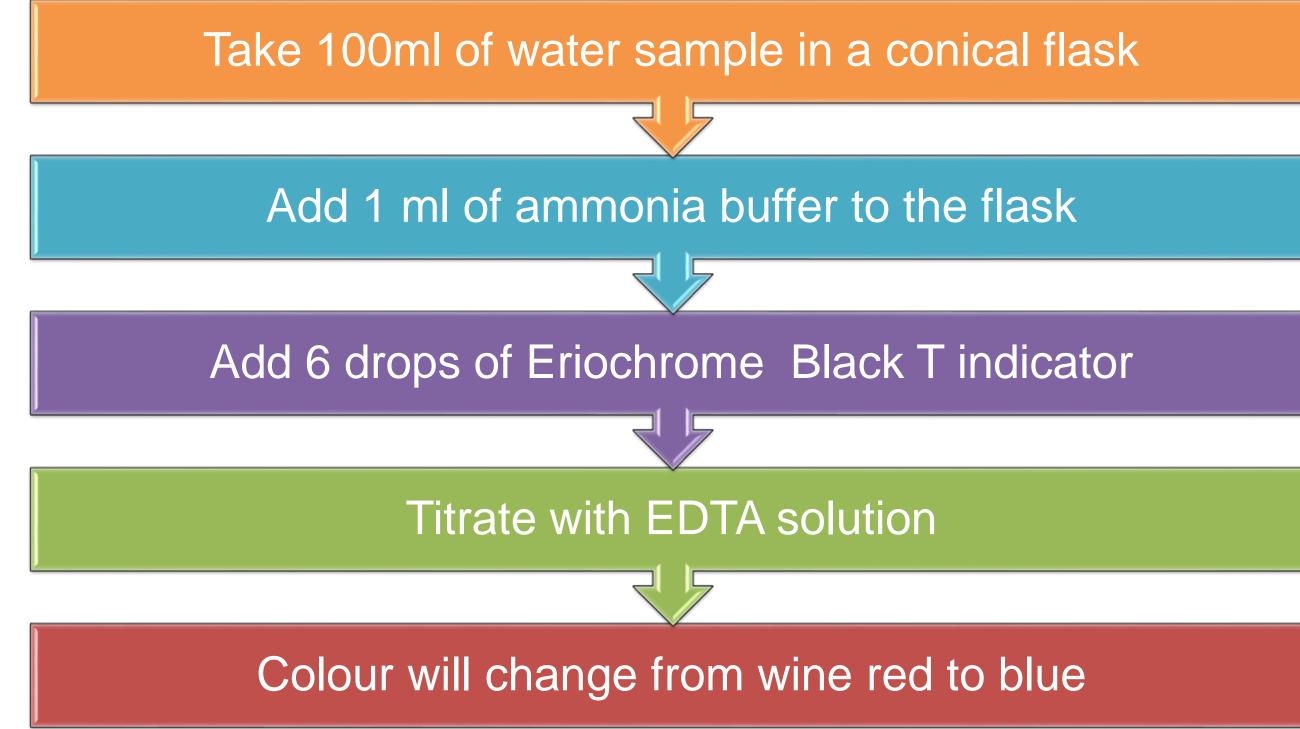
The water sample is then titrated with standard solution of silver nitrate.

Permanent Hardness

Presence of sulphate, chlorides and nitrates of calcium and magnesium

To remove hardness it requires special methods of water softening

Hardness


- •Carbonate hardness = Total hardness or Alkalinity (which less)
- •Non-carbonate hardness = Total hardness Alkalinity
- One French degree of hardness is equal to 10mg/l of CaCO3.
- One British degree of hardness is equal to a hardness of 14.25mg/l.
- Water with hardness up to 75 ppm are considered soft and above 200 ppm are considered hard and in between is considered as moderately hard.
- The prescribed hardness limit for public supplies range between 75 to 115 ppm.

İS ever

ENVIRONMENTAL ENGINEERING/R.PRIYS/CIVIL/SNSCT

- The presence of nitrogen in water may occur in one or more of the following reasons:
- **1. Free ammonia:** It indicates very first stage of decomposition of organic matter. It should not exceed 0.15mg/l
- **2. Albuminous or Organic Matter:** It indicates the quantity of nitrogen present in water before the decomposition of organic matter has started. It should not exceed 0.3mg/l
- 3. Nitrites: Not fully oxidized organic matter in water.
- **4. Nitrates:** It indicates fully oxidized organic matter in water (representing old pollution).

- Nitrites is highly dangerous and therefore the permissible amount of nitrites in water should be nil.
- Ammonia nitrogen + organic nitrogen = kjeldahl nitrogen
- Nitrates in water is not harmful. However the presence of too much of nitrates in adversely affect the health of infants causing a disease called water may methemoglobinemia commonly called blue baby disease.
- The nitrate concentration in domestic water supplies is limited to 45 mg/l.

Metals and other chemical substance

- Iron 0.3ppm, excess of these cause discolouration of clothes.
- Manganese 0.05ppm
- Copper 1.3ppm
- Sulphate 250 ppm
- Fluoride 1.5 ppm, excess of this effects human lungs and other respiratory organs.
- Fluoride concentration of less than 0.8 1.0 ppm cause dental cavity (tooth decay). If fluoride concentration is greater than 1.5ppm, causing spotting and discolouration of teeth (a disease called fluorosis).

Dissolved gases

- 1.Methane Explosive tendency
- 2. Hydrogen sulphide gas bad taste and odour
- 3. Carbondioxide corrosion, bad taste and odour
- 4. Oxygen indicates presence of organic matter
- •BOD Biochemical oxygen demand

- •Presence of bacteria and micro organism
- •Size of bacteria length(1-10 μ m), width or diameter(0.2-2.5 μ m)
- •Largest bacteria 100 to 750 μm
- •Pathogenic bacteria and non-pathogenic bacteria
- •Aerobic bacteria require oxygen for survival
- •Anaerobic bacteria survive in the absence of oxygen
- •Facultative bacteria survive with or without free oxygen

DRINKING WATER STANDARDS

S.No.	Type of characteristics	Type of impurity	Permissible limit	Absolute maximum limit	Remarks
1 Physical		Turbidity	5	25	On silica scale
	Physical	Colour	5	50	Colour number on cobalt scale
		Taste and odour	1	3	Threshold odour number
2 Chemical		pH value	7 – 8.5	6.5 – 9.2	
		Hardness	75 mg/l	110 mg/l	Hardness expressed as CaCO ₃
		Total solids	500 mg/l	1500 mg/l	As per WHO standards
		Magnesium and sodium	500 mg/l	1000 mg/l	As per WHO standards
		Chlorides	200 mg/l	600 mg/l	As per WHO standards
		Sulphates	200 mg/l	400 mg/l	As per WHO standards
		Calcium	75 mg/l	200 mg/l	As per WHO standards
		Zinc	5 mg/l	15 mg/l	As per WHO standards
		Copper	1 mg/l	1.5 mg/l	As per WHO standards

DRINKING WATER STANDARDS

S.No.	Type of characteristics	Type of impurity	Permissible limit	Absolute maximum limit
2	Chemical	Copper	1 mg/l	1.5 mg/l
		Iron	0.3 mg/l	1.0 mg/l
		Manganese	0.1 mg/l	0.2 mg/l
		Arsenic	Nil	0.2 mg/l
		Lead	Nil	0.1 mg/l
		Selenium	Nil	0.05 mg/l
		Chromium	Nil	0.05 mg/l
		Phenolic compounds as phenol	0.001 mg/l	0.002 mg/l
		Cynide	Nil	0.01 mg/l
		Fluoride	0.5 mg/l	1.5 mg/l
		Cadmium	_	0.05 mg/l
3	Biological and micro- organic	Coliform bacteria	Nil coliform per 100 ml or MPN of B coli 1 per 100 ml	1 coliform

References

- https://web.stanford.edu/class/cs227/Lectures/lec14.pdf •
- http://aima.cs.berkeley.edu/newchap05.pdf •
- https://www.seas.upenn.edu/~cis391/Lectures/CSP.pdf lacksquare
- https://www.cs.ubc.ca/~poole/aibook/html/ArtInt_76.html lacksquare
- https://nptel.ac.in/courses/106/106/106106158/

