UNIT II – Brute Force and Divide and Conquer

Brute Force Design Technique

- Selection Sort
- Bubble Sort
- Sequential Search
- Closest pair and Convex hull problem
- Travelling Salesman problem
- Knapsack problem
- Assignment problem

Sequential Search – Traditional method

- Worst case O(n) element not found/ search element is in last position of list
- Best case O(1) element found at 1^{st} position
- Average case element found at mid position of the list

```
#include<stdio.h>
void main()
    int a[100],n,i;
    printf("\n enter the array elements");
    scanf ("%d", &n);
    for(i=0;i<n;i++)
        scanf("%d", &a[i]);
    printf("\n enter the element to search");
    scanf ("%d", &n);
    printf("\n searching");
    for(i=0;i<n;i++)
        if(a[i]==n)
            printf("\n Element found %d at position %d",a[i],i+1);
            exit(0);
```

Sequential Search

• Extra trick in implementing sequential search – append the search element to the last position in the list

55	60	70	32	23	89	32
A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	Search key A[n]

```
ALGORITHM SequentialSearch2(A[0..n], K)

//Implements sequential search with a search key as a sentinel

//Input: An array A of n elements and a search key K

//Output: The index of the first element in A[0..n − 1] whose value is

// equal to K or −1 if no such element is found

A[n] ← K

i ← 0

while A[i] ≠ K do

i ← i + 1

if i < n return i

else return −1
```

UNIT II – Brute Force and Divide and Conquer

• Brute Force Design Technique

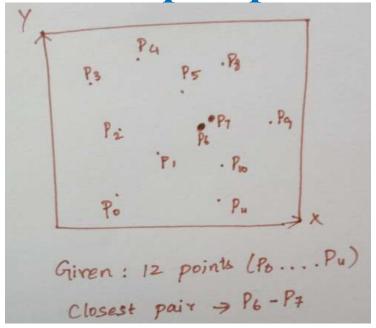
- Selection Sort
- Bubble Sort
- Sequential Search
- Closest pair and Convex hull problem
- Travelling Salesman problem
- Knapsack problem
- Assignment problem

Closest pair problem

- Geometric problem
- Straight forward approach Finite set of points in the plane
- Applications: computational geometry and operations research
- Google map- nearby restaurants
- Problem statement: find the two closest points in a set of points
- Solution:
- Assumption:
 - 2-dimensional space
 - (x,y) Cartesian coordinates
 - Distance between 2 points $P_i=(x_i,y_i)$, $P_j=(x_j,y_j)$ Euclidean distance

$$d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}.$$

Closest pair problem



ALGORITHM BruteForceClosestPair(P)

```
//Finds distance between two closest points in the plane by brute force //Input: A list P of n (n \ge 2) points p_1(x_1, y_1), \ldots, p_n(x_n, y_n) //Output: The distance between the closest pair of points d \leftarrow \infty for i \leftarrow 1 to n-1 do for j \leftarrow i+1 to n do d \leftarrow \min(d, sqnt((x_i-x_j)^2+(y_i-y_j)^2)) //sqnt is square root return d
```

Analysis of Closest-pair problem

- 1.Problem size: n
- 2.Basic operation : Euclidean Distance
- 3. Count of basic operation-----□
- 4.Efficiency worst case

Chosel pair problem — Count of basic operation

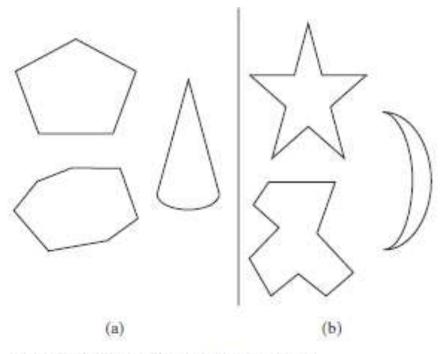
$$C(n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2^{-j}$$

$$= 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (n-(i+i)+i)$$

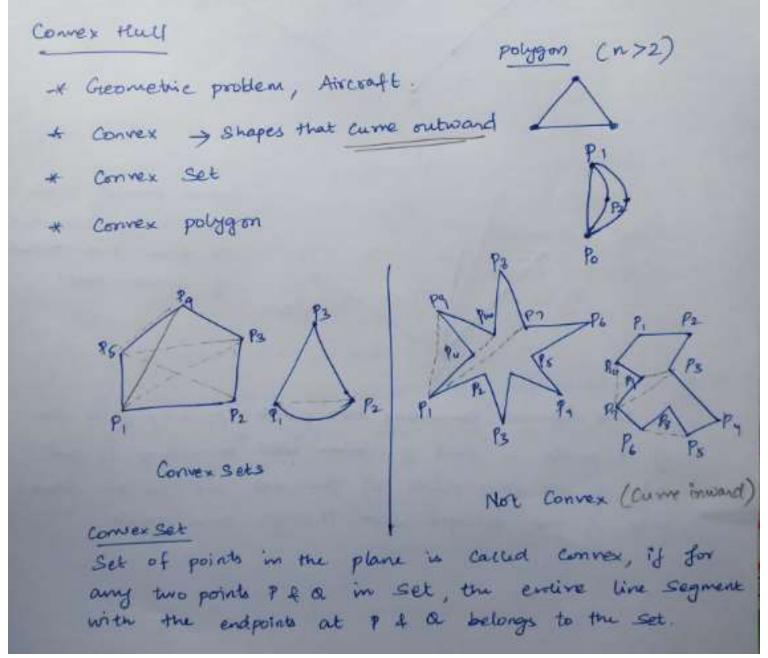
$$= 2 \sum_{i=1}^{n-1} (n-i) - \sum_{i=1}^{n$$

DAA-UNIT II-M.Lavanya (AP/CSE)

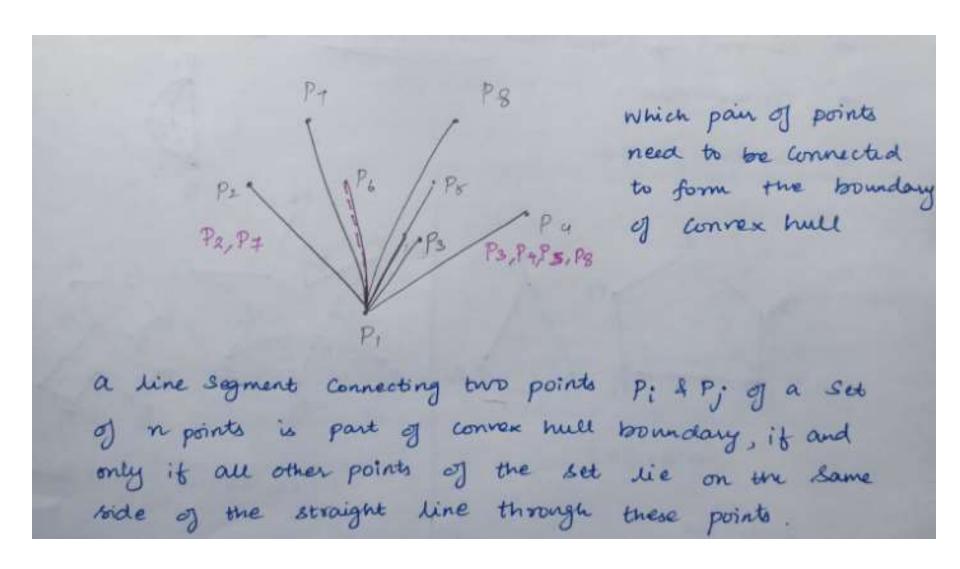
Convex Hull



(a) Convex sets. (b) Sets that are not convex.



Convex hull of Set S of points is the Smallest convex Set Containing 5. * Convex polygon -> Vertices. -> extreme points Should not be a middle point of any line segment



```
Straigne line - a points (a, y1) (22, 42)
               ax +by - C
   Here a = y2 - 4,
          b = 24 - xa
          C = 24,42 - 4,22
 all points above the line -> ax + by > c ] (P., P2) all points below the line > ax + by < c ] forms boun
Algorithm
  for each point P_i

for each point P_j where P_j \neq P_i
                    line Segment (Pi, Pj.)
(Pa, Pa, Ps, ... PR)
                    for all other points Pk (Pk # Pi&Pj)
                         if each Pk is on one side of
                          line Segment, I
                                Pi, Pj & Connex hull boundary
                                PIPE (boundary of Convex hell)
```

Convex Hull - Analysis

- Input size n (set of points)
- Basic operation
- Count of basic operation $O(n^3)$
- Worst case