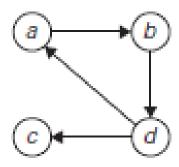


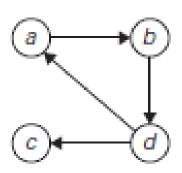
Unit III – Dynamic Programming

- Dynamic Programming
 - Computing a Binomial Coefficient
 - Warshall's algorithm
 - Floyd's algorithm
 - Optimal Binary Search Trees
 - Knapsack Problem and Memory functions

- Compute the *Transitive closure* of a directed graph
- The *transitive closure* of a directed graph with n vertices can be defined as the $n \times n$ boolean matrix $T = \{tij\}$, in which the element in the ith row and the jth column is 1 if there exists a nontrivial path (i.e., directed path of a positive length) from the ith vertex to the jth vertex; otherwise, tij is 0.
- Example: directed graph (digraph)

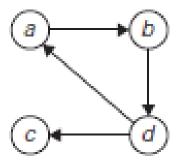


• Adjacency Matrix - $A = \{a_{ij}\}\$ of a digraph is the boolean matrix that has 1 in the ith row and jth column if and only if there is a directed edge from ith vertex to jth vertex.



$$A = \begin{bmatrix} a & b & c & d \\ 0 & 1 & 0 & 0 \\ b & 0 & 0 & 0 & 1 \\ c & 0 & 0 & 0 & 0 \\ d & 1 & 0 & 1 & 0 \end{bmatrix}$$

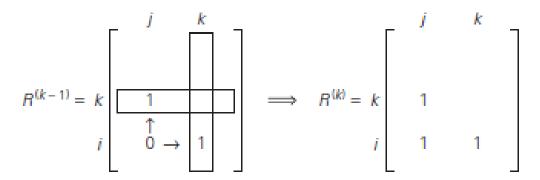
Transitive closure



	a	b	С	d
a	1	1	1	1
b	1	1	1	1
С	0	0	0	0
d	1	1	1	1

- series of $n \times n$ boolean matrices: $R(0), \ldots, R(k-1), R(k), \ldots R(n)$.
- Matrix value is 1 using the formula as follows

$$r_{ij}^{(k)} = r_{ij}^{(k-1)}$$
 or $\left(r_{ik}^{(k-1)} \text{ and } r_{kj}^{(k-1)}\right)$



Rule for changing zeros in Warshall's algorithm.

Warshall's algorithm – Example

R_0	a	b	С	D
a	0	1	0	0
b	0	0	0	1
С	0	0	0	0
d	1	0	1	0

R_1	a	b	С	D
a	0	1	0	0
b	0	0	0	1
С	0	0	0	0
d	1	1	1	0

		8	b	\boldsymbol{c}	d
<i>A</i> =	8	0	1	0	<i>d</i> 0
	b	0	1 0 0	0	1
	C	0	0	0	0
	d	_1	0	1	0

R_2	a	b	С	D
a	0	1	0	1
b	0	0	0	1
С	0	0	0	0
d	1	1	1	1

R_3	a	b	С	D
a	0	1	0	1
b	0	0	0	1
С	0	0	0	0
d	1	1	1	1

R ₄	a	b	c	D
a	1	1	1	1
b	1	1	1	1
С	0	0	0	0
d	1	1	1	1

Warshall's algorithm - Algorithm

```
ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
R^{(0)} \leftarrow A

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] or (R^{(k-1)}[i, k] and R^{(k-1)}[k, j])

return R^{(k)}
```

Warshall's algorithm - Example

