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UNIT I - FUNDAMENTAL CONCEPTS

Initial and Boundary Conditions: Well-posed and Ill-posed Problems

In partial differential equations, it is sometimes easy to attempt a solution using incorrect or
insufficient boundary and initial conditions. Whether the solution is being attempted
analytically or numerically, such an “ill- posed™ problem will usually lead to spurious results
at best and no solution at worst. The supersonic blunt body problem discussed above is a classic
example. When considering the mixed subsonic-supersonic flow from a steady flow point of

view, any attempt to obtain a uniformly valid solution procedure for both regions was ill- posed.

Therefore, we define a well-posed problem as follows: If the solution to a partial differential
equation exists and is unique, and if the solution depends continuously upon the initial and
boundary conditions, then the problem is well- posed. In CFD, it is important that you establish
that your problem is well-posed before you attempt to carry out a numerical solution. When
the blunt body problem was set up using the unsteady Euler equations, and a time-marching
procedure was employed to go to the steady state at large times starting with essentially

arbitrary assumed initial conditions at time t = 0, the problem suddenly became well-posed.
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Chapter 3: Numerical discretization of the equations of
motion

3.1 Classification of Partial Differential Equations — Well-
Posedness — Initial and boundary conditions

Reminder about partial differential equations:

Second order linear partial differential equation (PDE)
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Second order linear partial differential equations are

classified into 3 types depending on the sign of ﬂz -y
B —ay>0 Hyperbolic

ﬁz —oy =0 Parabolic

B°—ay<0 Eliptic
The simplest (canonical) examples of these equations are

d’u  ,0°u
a) R =cC e Wave equation (hyperbolic).

Examples: vibrating string, water waves.



du _d’u
b) it o 2 Diffusion equation (parabolic).

Examples: heated rod, viscous damping.

o’u Jdu
+ =0 , .
C) Jx2 8y2 Laplace’s equation
(elliptic)
o’u Jdu

or Jx?2 + ay2 = /(%) Poisson’s equation

Examples: temperature of a plate, streamfunction/vorticity
relationship.

The behavior of the solutions, the proper initial and/or
boundary conditions, and the numerical methods that can be
used to find the solutions depend essentially on the type of
PDE that we are dealing with.

We need to study these canonical prototypes of the PDEs to
develop an understanding of their properties, and then apply
similar methods to the more complicated NWP equations.



Another canonical equation very important in atmospheric
science is:

Ju  du

d) g - _Ca_x advection equation (also hyperbolic)

The advection equation has the solution
u(x,t)=u(x—ct,0).

The advection equation is a first order PDE, but it can also
be classified as a hyperbolic, since its solutions satisfy the
wave equation
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Conversely, a) can be written as a first order system
du
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Example: solve the hyperbolic equation a) U, — ¢’u,, =0
by transformation of variables.

Define new variables:

E=x—ct
nN=x+ct

These are the characteristics of a this hyperbolic equation
along which signals are transmitted.



u, = uS, +un, =u;+u,

U, = UG, +u,1, = —u.c+u,c

so that

U, = [u& + 2”617 + ”nn]
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Therefore
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U, —cu, =—-4cu, =0

0’u

which means Uep = afg’an -

So, the solution of this equation may be expressed as a sum

of a function of 52 X — ¢t and another function of
nN=x+ct:

u=f(x—ct)+g(x+ct)

In the atmosphere we have waves (gravity waves, sound
waves, even Rossby waves, propagating along
characteristics with their own characteristic speed c).

Parabolic and elliptic equations don’t have characteristics



A well-posed initial/boundary condition problem has a unique
solution that depends continuously on the initial/boundary
conditions.

The specification of proper initial conditions (IC) and
boundary conditions (BC) for a PDE is essential in order to
have a well-posed problem.

¢ |f too many IC/BC are specified, there will be no
solution.

e If too few IC/BC are specified, the solution will not be
unique.

e If the number of IC/BC is right, but they are specified at
the wrong place or time, the solution will be unique, but
it will not depend smoothly on the IC/BC.

e This means that small errors in the IC/BC will produce
huge errors in the solution.

¢ In any of these cases we have an ill-posed problem.

And we can never find a numerical solution of a problem that
is ill posed: the computer will show its disgust by “blowing

”»

up”.
We briefly discuss well posed initial / boundary conditions:

du  u
1) Elliptic equations, e.g.: 3,2 e J(xy)

2" order elliptic equations require one boundary condition
on each point of the spatial boundary.



These are “boundary value”, time-independent problems,
and the methods used to solve them are introduced in
Section 3.4.

The boundary conditions for elliptic equations may be:

e on the value of the function (Dirichlet problem), as when
we specify the temperature u =T at the borders of a
plate, or

e on its normal derivative (Neumann problem), as when

du
we specify the heat flux, e.g., no flux 3, =0

e We could also have a mixed “Robin” boundary
condition, involving a linear combination of the function
and its derivative, as when we specify the flux

du
depending on the temperature a_x =Cu-T) g
ou d°u

2) Linear parabolic equations (E =0 2 ) require one

initial condition at the initial time and one boundary condition
at each point of the spatial boundaries (if they exist). The
spatial BC are similar as for elliptic equations but they
depend on time.

For example, for a heated rod, we need the initial
temperature T(x,0) and the temperature at each end T(0,t),
TL,t) as a function of time.

d’u  ,0°u
3) Linear hyperbolic equations ( RYE =cC 2 ) require as

many initial conditions as the number of characteristics that



come out of every point in the surface t=0, and as many
boundary conditions as the number of characteristics that
cross a point in the (space) boundary pointing inwards (into
the spatial domain).

Jdu Jou

Example: to solve g =—¢ O for x>0, t>0.

Fig. 3.1: Schematic of the characteristics of the advection
equation du/dt = —cdu/dx for positive and negative velocity
¢ and the corresponding well posed IC/BC.

a)c>0

y
.

u(0.)=g(t)

/

u(x,0)=F(x)

b) c<0

No BC
needed!




Characteristics: solutions of dx/dt=c. Space boundary: x=0.
(see schematic Fig. 3.1a,b). If c>0, we need IC: u(x,0)=f(x);
BC: u(0,t)=g(t) . If c<0, we need IC: u(x,0)=f(x) but no BC!

For nonlinear equations, no general statements can be
made, but physical insight and local linearization can help to
determine proper IC/BC.

For example, in the nonlinear advection equation

Jou Ju

e . _ .
9t A’ the characteristics are dx/dt=u, and since we

don’t know a priori the sign of u at the boundary, and
whether the characteristics will point inwards or outwards,
we have to estimate the value of u from the nearby solution,
and define the BC accordingly.

One method to solve simple PDE’s is the method of
separation of variables, but unfortunately in most cases it is
not possible to use it (hence the need for numerical
models!). Nevertheless, it is useful to try to solve some
simple PDE’s analytically.

Example 1: Solve by the method of separation of variables
these prototype PDEs:

o’u ou

V2 = —+ =
N ox’ oy’

subject to the BCs (data on the northern boundary)

u(x,0)=0; u(x,1)=Asinmrx; u(0,y)=u(l,y)=0



Separate variables: assume the solution is a product of a
function of x and a function of y:

u(x,y)=X(x)-Y(y)
The equation becomes
d°’X _dY d’X d’Y
+X—=0

1 1
! dx’ dy’ or X dx’ Y dy’

Since a function of x can be equal to a function of y, if and
only if they are both equal to the same constant —K”:

d’X d’Y
—~+K’X=0 -

dx dy

-K’Y =0
with solutions
X=C,;sinKx+C, cosKx Y =(C,sinh Ky + C, cosh Ky

The BC #(0,y) =0 forces C,=0 so that X = C;sinKx

the BC U4(1,¥)=Otorces sinK =0or K =nr ' so that
X =C,sinnmx

The BC 4(x,0) =0 forces C,=0 so that ¥ = C; sinh Kx

The BC u(x,1) = Asinm7mx forces n=m and
C,C,sinhmr=A



Thus the solution is

u(x,y) = ————sinmmxsinhmmy
sinh mrm

More general BCs for the elliptic equation:

Suppose that the northern boundary is now

u(x,1)= f(x)

Find the solution. Assume we can Fourier analyze the
function

u(x,1) = f(x)= Z‘;ak sin k7rx With;kzak < oo

(e e}

a, . .
u(x,y)= Y ————sinkmwxsinhkr
(x.3) kz:fsinhkﬂ Y

In the same way we can find solutions for non-vanishing
boundary values on the other three edges. Thus the more
general problem on a rectangular domain

Viu(x,y)=0 u(x,y)= F(x,y) on the boundary, may be
solved.



Another example: a Parabolic Equation:

Jou 0’u
_ G
ot ox*

0<x<Lt=20

Boundary Conditions: u(0,t)=u(1,t)=0;

Initial Conditions: u(x0) =/ (x) = Z{ak sin k7x

Find the solution
> 2.2,
u(x, )= a,e ™" sin kmx
k=1
Note that the higher the wavenumber, the faster it goes to

zero, i.e., the solution is smoothed as time goes on.

Another example: A Hyperbolic Equation

0’u  ,0°u
=c

ot: o’

0<x<1,0<¢<1
Boundary Conditions at the two borders: u(0,t)=u(1,t)=0

u(x,0)= f(x)= iak sInkmwx

Two Initial Conditions:
aa—”t‘(x, 0)=g(x)=) b, sinkmx
k=1

Find the solution by the method of separation of variables



Another example of a hyperbolic equation: Same as above,
but now, instead of 2 initial conditions, we give an initial and
a “final” condition:

BC: u(0,t)=u(1,t)=0
IC: u(x,0)=f(x); “final condition” u(x,1)=g(x).

In other words, we try to solve a hyperbolic (wave) equation
as if it were a boundary value problem.

Show that the solution is unique but it does not depend
smoothly on the IC/BCs, and therefore it is not a well-posed
problem.

Conclusion: Before trying to solve a problem numerically,
make sure that it is well posed: it has a unique solution that
depends continuously on the data that define the problem.



