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UNIT I - FUNDAMENTAL CONCEPTS 

 

Initial and Boundary Conditions: Well-posed and Ill-posed Problems  

In partial differential equations, it is sometimes easy to attempt a solution using incorrect or 

insufficient boundary and initial conditions. Whether the solution is being attempted 

analytically or numerically, such an “ill- posed" problem will usually lead to spurious results 

at best and no solution at worst. The supersonic blunt body problem discussed above is a classic 

example. When considering the mixed subsonic-supersonic flow from a steady flow point of 

view, any attempt to obtain a uniformly valid solution procedure for both regions was ill- posed. 

Therefore, we define a well-posed problem as follows: If the solution to a partial differential 

equation exists and is unique, and if the solution depends continuously upon the initial and 

boundary conditions, then the problem is well- posed. In CFD, it is important that you establish 

that your problem is well-posed before you attempt to carry out a numerical solution. When 

the blunt body problem was set up using the unsteady Euler equations, and a time-marching 

procedure was employed to go to the steady state at large times starting with essentially 

arbitrary assumed initial conditions at time t = 0, the problem suddenly became well-posed. 



Chapter 3: Numerical discretization of the equations of 
motion 
 
 
3.1 Classification of Partial Differential Equations – Well-
Posedness – Initial and boundary conditions  
 
Reminder about partial differential equations:  
 
Second order linear partial differential equation (PDE) 
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Second order linear partial differential equations are 

classified into 3 types depending on the sign of 
2! "#$ : 

 
! 2 "#$ > 0      Hyperbolic 
 

 
! 2 "#$ = 0      Parabolic 
 

 
! 2 "#$ < 0      Elliptic 
 
The simplest (canonical) examples of these equations are 
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   Wave equation (hyperbolic).  

 
Examples: vibrating string, water waves. 
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"   Diffusion equation (parabolic).  

    
Examples: heated rod, viscous damping. 
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= f (x, y)  Poisson’s equation 

 
 
Examples: temperature of a plate, streamfunction/vorticity 
relationship. 
 
The behavior of the solutions, the proper initial and/or 
boundary conditions, and the numerical methods that can be 
used to find the solutions depend essentially on the type of 
PDE that we are dealing with.  
 
 
We need to study these canonical prototypes of the PDEs to 
develop an understanding of their properties, and then apply 
similar methods to the more complicated NWP equations. 
 
 
 
 
 
 



Another canonical equation very important in atmospheric 
science is: 

d) 
x

u
c

t

u

!

!
"=

!

!

 advection equation (also hyperbolic) 

   
The advection equation has the solution 
( , ) ( ,0)u x t u x ct= ! . 

 
The advection equation is a first order PDE, but it can also 
be classified as a hyperbolic, since its solutions satisfy the 
wave equation  
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Conversely, a) can be written as a first order system 
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Example: solve the hyperbolic equation a) utt ! c
2
u
xx
= 0     

by transformation of variables. 
 
Define new variables:  
 
! = x " ct

# = x + ct
 

 
These are the characteristics of a this hyperbolic equation 
along which signals are transmitted. 



u
x
= u!!x + u""x

= u! + u"

u
t
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= #u!c + u"c  

 
so that 

u
xx
= u!! + 2u!" + u""#$ %&

u
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Therefore  

u
tt
! c2u

xx
= !4c2u"# = 0  

 

which means 
u!" =

#2u

#!#"
= 0

 

 
So, the solution of this equation may be expressed as a sum 
of a function of ! = x " ct and another function of 
! = x + ct : 
 
u = f (x ! ct) + g(x + ct)  
 
In the atmosphere we have waves (gravity waves, sound 
waves, even Rossby waves, propagating along 
characteristics with their own characteristic speed c). 
 
Parabolic and elliptic equations don’t have characteristics 
 
. 
 



 
 
A well-posed initial/boundary condition problem has a unique 
solution that depends continuously on the initial/boundary 
conditions.  
 
The specification of proper initial conditions (IC) and 
boundary conditions (BC) for a PDE is essential in order to 
have a well-posed problem.  
 

• If too many IC/BC are specified, there will be no 
solution.  

• If too few IC/BC are specified, the solution will not be 
unique.  

• If the number of IC/BC is right, but they are specified at 
the wrong place or time, the solution will be unique, but 
it will not depend smoothly on the IC/BC.  

• This means that small errors in the IC/BC will produce 
huge errors in the solution.  

• In any of these cases we have an ill-posed problem.  
 
And we can never find a numerical solution of a problem that 
is ill posed: the computer will show its disgust by “blowing 
up”. 
 
We briefly discuss well posed initial / boundary conditions:  
 

1)  Elliptic equations, e.g.: 
!
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= f (x, y)  

 
2nd order elliptic equations require one boundary condition 
on each point of the spatial boundary.  
 



These are “boundary value”, time-independent problems, 
and the methods used to solve them are introduced in 
Section 3.4.  
 
The boundary conditions for elliptic equations may be: 
 

• on the value of the function (Dirichlet problem), as when 
we specify the temperature u = T  at the borders of a 
plate, or  

• on its normal derivative (Neumann problem), as when 

we specify the heat flux, e.g., no flux 
!u

!x
= 0 .  

• We could also have a mixed “Robin” boundary 
condition, involving a linear combination of the function 
and its derivative, as when we specify the flux 

depending on the temperature 
!u

!x
= C(u " T ) :.  

 
 

2) Linear parabolic equations ( 2
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initial condition at the initial time and one boundary condition 
at each point of the spatial boundaries (if they exist). The 
spatial BC are similar as for elliptic equations but they 
depend on time. 
 
For example, for a heated rod, we need the initial 
temperature T(x,0) and the temperature at each end T(0,t), 
TL,t) as a function of time. 

3) Linear hyperbolic equations ( 2
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many initial conditions as the number of characteristics that 



come out of every point in the surface t=0, and as many 
boundary conditions as the number of characteristics that 
cross a point in the (space) boundary pointing inwards (into 
the spatial domain).  
 

Example: to solve  
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 for x>0, t>0.  

Fig. 3.1: Schematic of the characteristics of the advection 
equation xuctu !!"=!! // for positive and negative velocity 
c and the corresponding well posed IC/BC. 

x 

t 

a) c>0 

IC: 
u(x,0)=f(x) 

BC: 
u(0,t)=g(t) 

x 

t 
b) c<0 

IC: 
u(x,0)=f(x) 

No BC 
needed! 



 
Characteristics: solutions of dx/dt=c. Space boundary: x=0.  
(see schematic Fig. 3.1a,b).  If c>0, we need IC: u(x,0)=f(x); 
BC: u(0,t)=g(t) .  If c<0, we need IC: u(x,0)=f(x) but no BC! 
 
 
For nonlinear equations, no general statements can be 
made, but physical insight and local linearization can help to 
determine proper IC/BC.  
 
For example, in the nonlinear advection equation 
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, the characteristics are dx/dt=u, and since we 

don’t know a priori the sign of u at the boundary, and 
whether the characteristics will point inwards or outwards, 
we have to estimate the value of u from the nearby solution, 
and define the BC accordingly. 
 
One method to solve simple PDE’s is the method of 
separation of variables, but unfortunately in most cases it is 
not possible to use it (hence the need for numerical 
models!). Nevertheless, it is useful to try to solve some 
simple PDE’s analytically. 
 
Example 1: Solve by the method of separation of variables 
these prototype PDEs: 
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subject to the BCs (data on the northern boundary) 
 
u(x,0) = 0;  u(x,1) = Asinm! x; u(0, y) = u(1, y) = 0  



Separate variables: assume the solution is a product of a 
function of x and a function of y: 
 
u(x, y) = X(x) !Y (y)  
 
The equation becomes 
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Since a function of x can be equal to a function of y, if and 
only if they are both equal to the same constant !K 2 : 
 
d
2
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with solutions 
 
X = C

1
sinKx + C

2
cosKx Y = C

3
sinhKy + C

4
coshKy

 
The BC u(0, y) = 0 forces C2=0 so that X = C

1
sinKx  ;  

 
the BC u(1, y) = 0 forces sinK = 0 or K = n! ; so that 
X = C

1
sinn! x  

 
The BCu(x,0) = 0  forces C4=0 so that Y = C

3
sinhKx  

 
The BCu(x,1) = Asinm! x  forces n=m and 
C
1
C
3
sinhm! = A  



Thus the solution is 
 

u(x, y) =
A

sinhm!
sinm! x sinhm! y  

 
 
 
More general BCs for the elliptic equation: 
 
Suppose that the northern boundary is now 
 
u(x,1) = f (x)  
 
Find the solution. Assume we can Fourier analyze the 
function 
 

u(x,1) = f (x) = ak sin k! x
k=1

"

#  with k
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u(x, y) =
ak

sinh k!
sin k! x sinh k! y

k=1

"

#  

 
In the same way we can find solutions for non-vanishing 
boundary values on the other three edges. Thus the more 
general problem on a rectangular domain  
 
!
2
u(x, y) = 0 u(x, y) = F(x, y) on the boundary, may be 

solved. 
 
 



Another example: a Parabolic Equation: 
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Boundary Conditions: u(0,t)=u(1,t)=0;  
 

Initial Conditions: !
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Find the solution 
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Note that the higher the wavenumber, the faster it goes to 
zero, i.e., the solution is smoothed as time goes on. 
 
Another example: A Hyperbolic Equation  
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Boundary Conditions at the two borders: u(0,t)=u(1,t)=0 

Two Initial Conditions: 
1

( ,0) ( ) sink

k

u x f x a k x!
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Find the solution by the method of separation of variables 



Another example of a hyperbolic equation:  Same as above, 
but now, instead of 2 initial conditions, we give an initial and 
a “final” condition: 
 
BC: u(0,t)=u(1,t)=0 
 
IC: u(x,0)=f(x);  “final condition” u(x,1)=g(x). 
 
In other words, we try to solve a hyperbolic (wave) equation 
as if it were a boundary value problem.  
 
Show that the solution is unique but it does not depend 
smoothly on the IC/BCs, and therefore it is not a well-posed 
problem. 
 
Conclusion: Before trying to solve a problem numerically, 
make sure that it is well posed: it has a unique solution that 
depends continuously on the data that define the problem.  
 


