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UNIT I - FUNDAMENTAL CONCEPTS 

 

Discretization of Partial Differential Equations 

To solve the governing equations of the fluid motion, first, their numerical analog must 

be generated. This is done by a process referred to as discretization. In the discretization 

process, each term within the partial differential equation describing the flow is written in such 

a manner that the computer can be programmed to calculate. There are various techniques for 

numerical discretization. Here we will introduce three of the most commonly used techniques, 

namely: 

(1) The Finite Difference Method, 

(2) The Finite Element Method and 

(3) The Finite Volume Method. 

Spectral methods are also used in CFD, which will be briefly discussed. 

The Finite Difference Method 

The finite difference method utilizes the Taylor series expansion to write the 

derivatives of a variable as the differences between values of the variable at various points 

in space or time. Utilization of the Taylor series to discretize the derivative of the dependent 

variable, e.g., velocity u, concerning the independent variable, e.g., special coordinated x, is 

shown in Figure 1.13. Consider the curve in Figure 1.13 which represents the variation of 

u with x, i.e., u(x). After discretization, the curve u(x) can be represented by a set of discrete 

points, ui’s. These discrete points can be related to each other using a Taylor series expansion. 
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Consider two points, (i+1) and (i-1), a small distance Δx from the central point, (i). Thus 

velocity ui can be expressed in terms of Taylor series expansion about point (i) as: 

……Equation 1.58 

……Equation 1.59 

 

Figure 1.13 Location of points for the Taylor series 

These equations are mathematically exact if the numbers of terms are infinite and Δx is small 

.Note that ignoring these terms leads to a source of error in the numerical calculations as the 

equation for the derivatives is truncated. This error is referred to as the truncation error. For 

the second-order accurate expression, the truncation error is: 

……Equation 1.60  

By subtracting or adding these two equations, new equations can be found for the first 

and second derivatives at the central position i. These derivatives are 

……Equation 1.61 
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……Equation 1.62  

Equations 1.61 and 1.62 are referred to as the Central Difference Equations for first and second 

order respectively. The first-order derivative can be formed as 

 

……Equation 1.63 

This is referred 

to as the Forward difference. Similarly, another first-order derivative can be formed as 

 

……Equation 1.64  

This is referred to as the Backward difference. As noted by the expressions, different formulae 

are classified in two ways: 

(1) By the geometrical relationship of the points, namely, central, forward, and 

backward differencing 

(2) By the accuracy of the expressions, for instance, the central difference is 

second-order accurate, whereas, both forward and backward differences are first-order 

accurate, as the higher-order terms are neglected. 

The Finite Element Method 

In the finite element method, the fluid domain under consideration is divided into a 

finite number of sub-domains, known as elements. A simple function is assumed for the 

variation of each variable inside each element. The summation of the variation of the variable 

in each element is used to describe the whole flow field. Consider the two nodded elements 

shown in Figure 1.14, in which variable u varies linearly inside the element. The end points of 

the element are called the nodes of the element. For a linear variation of u, the first derivative 

of u concerning x is simply a constant. If u is assumed to vary linearly inside an element, we 

cannot define a second derivative for it. Since most fluid problems include a second derivative, 

the following technique is designed to overcome this problem. First, the partial differential 
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equation is multiplied by an unknown function, and then the whole equation can be integrated 

over the domain in which it applies. Finally, the terms that need to have the order of their 

derivatives reduced are integrated into parts. This is known as producing a variational 

formulation. 

 

Figure 1.14 A two-noded linear element 

As an example, we will develop the finite element formulation of Laplace's Equation in one 

dimension: 

 

……Equation 1.65 

where velocity u is a function of the spatial coordinates x. We multiply equation 1.65 by 

Some function W and integrate it over the domain of interest denoted by Ω: 

…Equation 1.66 

The above equation can be integrated into parts as, 

 

……Equation 1.67 
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where Γ denotes the boundary of the domain Ω and nx is the unit outward normal vector to the 

boundary Γ. We will now divide the domain into several elements and assume a function. 

For the variation of the variable u in each element. If a two-noded linear element is assumed, 

the variation of u in each element can be represented by 

…Equation 1.68  

The terms in the brackets are called the shape functions and are denoted as Ni‘s. ui-1 and ui+1 

are the nodal values of the variable u and are denoted as ui‘s. Therefore, the variable u can be 

written in the following form 

……Equation 1.69  

Thus, the shape functions corresponding to the two-nodal linear element, represented by 

 

……Equation 1.70 

We can now determine the derivatives of the variable u, using the equation 

……Equation 1.71  

Where m is the number of nodes on the element. Note that UI's are nodal values of u and they 

are not variables, therefore, they are not differentiated. To solve the equation we still need to 

describe the function W. There are several methods, which are used for the specification of the 

variable W. However, the most common method is the Galerkin method in which W is assumed 

to be the same as the shape function for each element. 
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The Finite Volume Method 

The finite volume method is currently the most popular in CFD. The main reason is 

that it can resolve some of the difficulties that the other two methods have. Generally, the finite 

volume method is a special case of finite element, when the function W is equal to 1 everywhere 

in the domain. A typical finite volume, or cell, is shown in Figure 1.15. In this figure, the 

centroid of the volume, point P, is the reference point at which we want to discretize the partial 

differential equation. 

Figure 1.15 A finite volume in one dimension 

The neighboring volumes are denoted as, W, the volume to the west side, and E, the volume 

to the east side of the volume P. For the one-dimensional finite volume shown in Figure 1., the 

volume with centroid P, has two boundary faces at w and e. The second derivative of a variable 

at P can be written as the difference between the 1st derivatives of the variable evaluated at 

the volume faces: 

 

Equation 1.72  

The first derivatives at the volume faces can be written as the differences in the values of the 

variable at the neighboring volume centroids: 

  

……Equation 1.73 

We can apply this technique to equation 1.73 to obtain its finite volume formulation. The 

above method is also referred to as the Cell Centered (CC) Method, where the flow variables 
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are allocated at the center of the computational cell. The CC variable arrangement is the 

most popular since it leads to considerably simpler implementations than other arrangements. 

On the other hand, the CC arrangement is more susceptible to truncation errors, when the mesh 

departs from uniform rectangles. Traditionally the finite volume methods have used regular 

grids for the efficiency of the computations. However, recently, irregular grids have become 

more popular for simulating flows in complex geometries. The computational effort is more 

when irregular grids are used since the algorithm should use a table to look at the geometrical 

relationships between the volumes or element faces. This involves finding data from a disk 

store of the computer, which increases the computational time. 

Spectral Methods 

Another method of generating a numerical analog of a differential equation is by using 

a Fourier series or series of Chebyshev polynomials to approximate the unknown functions. 

Such methods are called the Spectral method. Fourier series or series of Chebyshev 

polynomials are valid throughout the entire computational domain. This is the main difference 

between the spectral method and the FDM and FEM, in which the approximations are local. 

Once the unknowns are replaced with the truncated series, certain constraints are used to 

generate algebraic equations for the coefficients of the Fourier or Chebyshev series. Either a 

weighted residual technique or a technique based on forcing the approximate function to 

coincide with the exact solution at several grid points is used as the constraint. 

Comparison between Discretization Methods 

The main differences between the above three techniques include the followings. The 

finite difference method and the finite volume method both produce the numerical equations 

at a given point based on the values at neighboring points, whereas the finite element method 

produces equations for each element independently of all the other elements. It is only when 

the finite element equations are collected together and assembled into the global matrices that 

the interaction between elements is taken into account. 

Both FDM and FVM can apply the fixed-value boundary conditions by inserting the 

values into the solution but must modify the equations to take account of any derivative 

boundary conditions. However, the finite element method takes care of derivative boundary 

conditions when the element equations are formed and then the fixed values of variables must 

be applied to the global matrices. One advantage that the finite element method has is that the 

programs are written to create matrices for each element, which are then assembled to form 

the 
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Global equations before the whole problem is solved. Finite volume and finite difference 

programs, on the other hand, are written to combine the setting up of the equations and their 

solution. The decoupling of these two phases, in finite element programs, allows the 

programmer to keep the organization of the program very clear and the addition of new element 

types is not a major problem. Adding new cell types to a finite volume program can, however, 

be a major task involving a rewrite of the program and so some finite volume programs can 

exhibit problems if they have multiple cell types. 

 


