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UNIT I - FUNDAMENTAL CONCEPTS 

 

Explicit Finite Difference Method of Subsonic Flows – Elliptical Equations  

  The governing equation of subsonic fluid flows and heat transfer problems 

can be reduced to an elliptic form for particular applications. Some of the examples are the 

steady state heat conduction equation, velocity potential equation for incompressible, 

inviscid flow, and stream 

function equation. Now consider Laplace equation, 

    ……Equation 1.74  

The finite difference formulation of the above equation can be written by using the point 

formula as, 

         ……Equation 1.75 

The corresponding grid points are shown in figure 1.16. 

 

Figure 1.16 Grid for five-point formula 
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……Equation 1.76 

Define the ratio of step sizes as β = Δx/Δy and by rearranging the above equation we get,  

 

……Equation 1.77 

In order to explore various solution procedures, first consider a square domain with Dirichlet 

boundary conditions. For example let us simple example of 6 x 6 grid system subjected to the 

following boundary conditions.  

 

 

Figure 1.17 Grid system used for solution 

By applying the above equation 1.77 to the interior grid points produce sixteen equations with 

sixteen unknowns.  
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These equations are expressed in the matrix form as,  
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Solution Algorithms 

 In general there are two methods of solution for the system of simultaneous linear 

algebraic equations they are Direct and Iterative Methods. Some of the familiar direct methods 

are, Cramer‘s Rule and Gaussian Elimination Method. The major disadvantage of this method is 

it has enormous amount of arithmetic operations to produce a solution. So in this chapter 

discusses only in the iterative method. Iterative procedures for solving  a system of linear 

algebraic equations are simple and easy to program. The idea behind this method is to obtain the 

solution by iteration.  The various formulations of the iterative method can be divided into two 

categories. If the formulations results only in one unknown this is called as Explicit/Point 

iterative method. If the formulation involves more than one unknown it is called as Implicit/Line 

iterative method.  
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Figure 1.18 Explicit Formulation 

 

 

Figure 1.19 Implicit Formulation 

The Jacobi Iteration Method 

 In this method the dependent variable at each grid point is solved using initial guessed 

values of the neighboring points or previously computed values. Therefore the equation is given 

by,  

 

……Equation 1.78 

Which is used to compute uij at the new iteration level of k+1 where k corresponds to the 

previously computed values. The computation is carried out until a specified convergence 

criteria is met. The results from the convergence can be called as Converged Solution if it has 

met the convergence criteria and as Steady-State Solution if the results does not vary with time.  

The Point Gauss-Seidel Iteration Method 

 In this method the current values of the dependent variable is are used to compute the 

neighboring points as soon as they are available. This will certainly increase the convergence 

rate dramatically over the Jacobi method. The method is convergent if the largest elements are 

located in the main diagonal of the coefficient matrix.  

The formal requirement for the convergence of the method is  
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And at least for one row,  

 

……Equation 1.79 

Since this is a sufficient condition, the method may converge even though the condition is met 

for all rows. The finite difference equation 1.79 can be written  as  

 

……Equation 1.80 

 

Figure 1.20 Grid Points for the equation 1.30 

For the computation of the value at the point (2,2) the equation can be written as,  

……Equation 1.81 

In the above equation u12 and u21 are provided by the boundary conditions and values u23 and u32 

are the values from the previous iteration. Thus in terms of the iteration level the equation can be 

written as,  

 

……Equation 1.82 

The general formulation is provided by the equation 
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……Equation 1.83 

This is a point iteration method since only one unknown is sought. The grid points are shown in 

the below figure.  

 

Figure 1.21 Grid points for the equation 1.83 

Point Successive Over-Relaxation Method (PSOR) 

 In this solution process a trend in the computed values of the dependent variable is 

noticed, then the direction of change can be used to extrapolate for the next iteration and thereby 

accelerating the solution procedure. This procedure is known as successive over-

relaxation(SOR).  

Consider the point Gauss Seidel iteration method, which is given by 

 

……Equation 1.84 

Adding  to the right hand side and collecting the terms we obtain 

 

……Equation 1.85 

As the solution proceeds uij
k
 must approach uij

k+1
 . To accelerate the solution the values in the 

bracket is multiplied by ω, the relaxation parameter.  

So the equation becomes,  
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For the solution to converge it is necessary that 0 < ω < 2. If 0 < ω < 1 it is called under 

relaxation, the above equation is rearranged as,  

 

……Equation 1.86 

1.9 Explicit Finite Difference Method of Supersonic Flows – Hyperbolic 

Equations 

 The model equation considered for studying the Explicit FDM methods for the 

Hyperbolic equations is First order wave equation,  

 

……Equation 1.87 

Which is linear equation for constant speed a.  

Euler’s FTFS method 

 In this explicit method, forward time and forward space approximations of the first-order 

are used, the resulting Finite Difference Equation (FDE) is  

 

……Equation 1.88 

Euler’s FTCS method 

 In this formulation central differencing of special derivative is used, the resulting FDE is  

 

……Equation 1.89 

The First Upwind Differencing Method 

 The backward differencing of the special derivative produces the FDE,  

 

……Equation 1.90 

This method is stable when c is less than or equal to 1.  
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It is the Courant number. The FDE for the conditionally stable solution is  

 

……Equation 1.91 

The Lax method 

 If an average value of ui
n
 in the Euler‘s FTCS method is used , we get a FDE of the form,  

 

……Equation 1.92 

This method is stable when,  

Midpoint Leapfrog method 

 In this method, Central differencing of the second order is used of both the time and 

space derivative.  This gives the FDE,  

 

……Equation 1.93 

This is of the order . This method is stable when,  

This requires the two sets of the initial values to start the solution. The Midpoint Leapfrog 

method has a higher order of accuracy.  

The Lax-Wendroff method 

 This finite difference approximation of the PDE is derived from the Taylor series 

expansion of the dependent variable as follows. 

 

……Equation 1.94 

In the terms of the indices 

 

……Equation 1.95 

Now consider the model equation 
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……Equation 1.96 

By taking the time derivative we get,  

 

……Equation 1.97 

Substitute both the equations in the indices terms shown above we get,  

 

……Equation 1.98 

By applying the space derivative of the first and second order derivatives, we get 

 

……Equation 1.99 

This formulation is known as the Lax-Wendroff method, this method is stable for  

1.10 Explicit Finite Difference Method of Viscous Flows – Parabolic Equations 

The Forward Time/Central Space (FTCS) method 

 In this method forward difference approximation for the time derivative and central 

differencing for the space derivative which gives,  

 

……Equation 1.100 

The above equation is stable for  

The Richardson method 

 In this approximation method central differencing is used for both time and space 

derivatives, the resulting FDE is,  

 

……Equation 1.101 
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The above equation is unconditionally unstable and has no practical value. 

The DuFort-Frankel method 

 In this formulation the time derivative is approximated by a central differencing and the 

second order space derivative is also approximated by the central differencing method. Due to 

stability constrains ui
n 

in the right hand side is replaced by the average value. This is the 

modification of the Richardson method. The resulting FDE is  

 

……Equation 1.102 

From which 

 

……Equation 1.103 

This can be rewritten as  

 

……Equation 1.104 

This method is of the order of ,  

 

 

Figure 1.22 Grid points for the DuFort-Frankel method 

 

 

 


