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UNIT I - FUNDAMENTAL CONCEPTS 

 

Incompressible Inviscid Flows – Source, Vortex and Doublet 

This section discusses about the numerical analysis of incompressible Inviscid flows. 

The Incompressible and Inviscid flows are referred as the as the Ideal Flows, i.e. they have ρ 

= constant and µ = constant. They are flows where the density is constant and the viscosity 

effects are negligible. 

The Uniform Flow 

Consider a uniform flow with velocity V∞ moving in the x-direction, as sketched in Fig. 3.1. 

This flow is irrotational, and a solution of Laplace‘s equation for uniform flow yields: 

……Equation 1.22 

 

 

Figure 1.3 The uniform flow 

In polar coordinates, (r, θ), the above equation can be expressed as 
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……Equation 1.23 

The Source Flow 

 Consider a flow with straight streamlines emanating from a point, where the velocity 

along each streamline varies inversely with distance from the point, as shown in Figure 1.4. Such 

flow is called source flow. This flow is also irrotational, and a solution of Laplace‘s equation 

yields  

 

……Equation 1.24 

where Λ is defined as the source strength; Λ is physically the rate of volume flow from the 

source, per unit depth perpendicular to the page in Figure 1.4. If Λ is negative, Sink flow, which 

is the opposite of source flow. In Figure 1.4. point 0 is the origin of the radial streamlines. We 

can visualize that point 0 is a point source or sink that induces the radial flow about it; in this 

interpretation, the point source or sink is a singularity in the flow field. We can also visualize 

that point 0 in Figure 1.4., is simply one point formed by the intersection of the plane of the 

paper and a line perpendicular to the paper. The line perpendicular to the paper is a line source, 

with strength Λ per unit length. 

 

Figure 1.4 Source flow 
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The Vortex Flow 

 Consider a flow where all the streamlines are concentric circles about a given point, 

where the velocity along each streamline is inversely proportional to the distance from the 

centre, as shown in Figure 1.5. Such flow is called vortex flow. This flow is irrotational, and a 

solution of Laplace‘s equation yields 

 

……Equation 1.25 

 

Figure 1.5 Vortex flow 

Where Γ is the strength of the vortex. In Figure 1.5., point 0 can be visualized as a point vortex 

that induces the circular flow about it; in this interpretation, the point vortex is a singularity in 

the flow field. Visualize that point 0 in Figure 1.5. is simply one point formed by the intersection 

of the plane of the paper and a line perpendicular to the paper. This line is called a vortex 

filament, of strength Γ. The strength Γ is the circulation around the vortex filament, where 

circulation is defined as 

 

……Equation 1.26 

In the above, the line integral of the velocity component tangent to a curve of elemental length ds 

is taken around a closed curve. This is the general definition of circulation. For a vortex filament, 

the above expression for Γ is defined as the vortex strength. 
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The Doublet 

 The source and sink pair leading to a singularity is called a Doublet Flow. The potential 

at some point P, caused by a doublet at Q, is given by 

 

 
……Equation 1.27 

Here μ(Q) is the strength of the doublet and nQ is the direction of the doublet. 

 
 

Figure 1.6 Doublet 

Once more, we can put a lot of doublets in a row. We then get a doublet distribution. To 

find the velocity potential at P, we now have to use 

 
……Equation 1.28 

1.4 Panel Methods – Lifting Flow over Arbitrary Bodies 

 Panel method is a technique of approximating the flow by replacing the flow surface by a 

series of Line segments (2D) or Panels (3D) and placing the distribution of source or vortices or 

doublets on each panel. The advantages of this method include,  

 1. No need to define a throughout the flow field 

 2. Flexibility, i.e. capable of treating wide range of geometries 

 3. Economy – provides result with in a relative short time 
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Non-lifting Flows over Arbitrary Bodies – The Source Panel Method is used because source 

has zero circulation, therefore it is used only for non-lifting cases.   

 

Figure 1.7 The Source Sheet 

Lifting Flow over Arbitrary Bodies – The Vortex Panel Method is used because the vortices 

have circulation and they are used for lifting cases.  

 

Figure 1.8 The Panel Sheet 

In the present section, we introduce the analogous concept of a vortex sheet. Consider the 

straight vortex filament as shown in the above figure 1.8. Now imagine an infinite number of 

straight vortex filaments side by side, where the strength of each filament is infinitesimally 

small. These side-by-side vortex filaments form a vortex sheet, as shown in perspective in the 

figure 1.8. If we look along the series of vortex filaments the vortex sheet will appear as sketched 

at the lower right of Fig. 3.10. Here, we are looking at an edge view of the sheet; the vortex 

filaments are all perpendicular to the page. Let s be the distance measured along the vortex sheet 

in the edge view. Define γ = γ(s) as the strength of the vortex sheet, per unit length along s. Thus, 

the strength of an infinitesimal portion ds of the sheet is γ ds. This small section of the vortex 
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sheet can be treated as a distinct vortex of strength γ ds. Now consider point P in the flow, 

located a distance r from ds. The small section of the vortex sheet of strength γ ds induces a 

velocity potential at P, obtained from Equation 1.25 as 

 

……Equation 1.29 

The velocity potential at P due to the entire vortex sheet from a to b is 

 

……Equation 1.30 

In addition, the circulation around the vortex sheet in Fig. 3.10 is the sum of the strengths of the 

elemental vortices, i.e. 

 

……Equation 1.31 

Another property of a vortex sheet is that the component of flow velocity tangential to the sheet 

experiences a discontinuous change across the sheet, given by 

 

……Equation 1.32 

where u1 and u2 are the tangential velocities just above and below the sheet respectively. 

Equation 1.32 is used to demonstrate that, for flow over an airfoil, the value of γ is zero at the 

trailing edge of the airfoil. This condition, namely 

 

……Equation 1.33 

is one form of the Kutta condition which fixes the precise value of the circulation around an 

airfoil with a sharp trailing edge. Finally we note that the circulation around the sheet is related 

to the lift force on the sheet through the Kutta–Joukowski theorem: 
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……Equation 1.34 

 

Figure 1.9 Simulation of an arbitrary airfoil by distributing a vortex sheet 

Clearly, a finite value of circulation is required for the existence of lift. In the present section, we 

will see that the ultimate goal of the vortex panel method applied to a given body is to calculate 

the amount of circulation, and hence obtain the lift on the body from Equation 1.34. With the 

above in mind, consider an arbitrary two-dimensional body, shown in Figure 1.9. Let us wrap a 

vortex sheet over the complete surface of the body, as shown in Figure 1.9.We wish to find γ(s) 

such that the body surface becomes a streamline of the flow. This is the purpose of the vortex 

panel method. 

 

Figure 1.10 Source panel distribution over the surface of a body of arbitrary shape 

Let us approximate the vortex sheet shown in Figure 1.9 by a series of straight panels. Let the 

vortex strength γ(s) per unit length be constant over a given panel, but allow it to vary from one 

panel to the next. That is, for the n panels shown in Figure 1.10, the vortex panel strengths per 

unit length are γ1, γ2, . . . , γj, . . . , γn. These panel strengths are unknowns; the main thrust of the 

panel technique is to solve for γj, j = 1 to n, such that the body surface becomes a streamline of 

the flow and such that the Kutta condition is satisfied.  

Let P be a point located at (x, y) in the flow, and let rpj be the distance from any point on the j
th

 

panel to P, as shown in Figure 1.10. The radius rpj makes the angle θpj with respect to the x-axis. 

The velocity potential induced at P due to the j
th

 panel, Δθj, is, from Equation 1.29, 
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……Equation 1.35 

In Equation 1.35, γj is constant over the j
th

 panel, and the integral is taken over the j
th

 panel only. 

The angle θpj is given by 

 

……Equation 1.36 

In turn, the potential at P due to all the panels is Equation 1.35 summed over all the panels: 

 

……Equation 1.37 

Since point P is just an arbitrary point in the flow, let us put P at the control point of the i
th

 panel 

shown in Figure 1.10. The coordinates of this control point are (xi, yi). Then Equation 1.36 and 

1.37 become 

 

……Equation 1.38 

Equation 1.38 is physically the contribution of all the panels to the potential at the control point 

of the i
th

 panel. At the control points, the normal component of the velocity is zero; this velocity 

is the superposition of the uniform flow velocity and the velocity induced by all the vortex 

panels. The component of V∞ normal to the i
th

 panel is given  

 

……Equation 1.39 

The normal component of velocity induced at (xi, yi) by the vortex panels is 
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……Equation 1.40 

Combining Equation 1.38 and 1.40, we have 

 

……Equation 1.41 

 

Figure 1.11 Vortex panel at the trailing edge 

Equation 1.41 is a linear algebraic equation with n unknowns, γ1, γ2, . . . , γn. It represents the 

flow boundary condition evaluated at the control point of the i
th

 panel. If Equation 1.41 is applied 

to the control points of all the panels, we obtain a system of n linear equations with n unknowns. 

To this point, we have been deliberately paralleling the discussion of the source panel method 

however, the similarity stops here. For the source panel method, the n equations for the n 

unknown source strengths are routinely solved, giving the flow over a non-lifting body. In 

contrast, for the lifting case with vortex panels, in addition to the n equations given by Equation 

1.41 applied at all the panels, we must also satisfy the Kutta condition, Equation 1.41. This can 

be done in several ways. For example, consider Figure 1.11, which illustrates a detail of the 

vortex panel distribution at the trailing edge. Note that the length of each panel can be different; 

their length and distribution over the body is up to your discretion. Let the two panels at the 

trailing edge (panels i and i − 1 in Figure 1.11) be very small. The Kutta condition is applied 

precisely at the trailing edge and is given by γ(TE) = 0. To approximate this numerically, if points 

i and i−1 are close enough to the trailing edge, we can write 
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……Equation 1.42 

such that the strengths of the two vortex panels i and i − 1 exactly cancel at the point where they 

touch at the trailing edge. Thus, in order to impose the Kutta condition on the solution of the 

flow, Equation 1.42 must be included. Note that Equation 1.41 evaluated at all the panels and 

Equation 1.42 constitutes an over-determined system of n unknowns with n + 1 equations. 

Therefore, to obtain a determined system, Equation 1.41 is not evaluated at one of the control 

points on the body. That is, we choose to ignore one of the control points, and we evaluate 

Equation 1.41 at the other n − 1 control points. This, in combination with Equation 1.42, now 

gives a system of n linear algebraic equations with n unknowns, which can be solved by standard 

techniques.  

 

Figure 1.12 Airfoil as a solid body with zero velocity inside the profile 

At this stage, we have conceptually obtained the values of γ1,γ2, . . . , γn which make the body 

surface a streamline of the flow and which also satisfy the Kutta condition. In turn, the flow 

velocity tangent to the surface can be obtained directly from γ. To see this more clearly, consider 

the airfoil shown in Figure 1.12. We are concerned only with the flow outside the airfoil and on 

its surface. Therefore, let the velocity be zero at every point inside the body, as shown in Figure 

1.12. In particular, the velocity just inside the vortex sheet on the surface is zero.  

 

……Equation 1.43 

u denotes the velocity tangential to the vortex sheet. In terms of the picture shown in Figure 1.12, 

we obtain Va = γa at point a, Vb = γb at point b, etc. Therefore, the local velocities tangential to 

the airfoil surface are equal to the local values of γ. In turn, the local pressure distribution can be 

obtained from Bernoulli‘s equation. 
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The total circulation and the resulting lift are obtained as follows. Let sj be the length of the j
th

 

panel. Then the circulation due to the j
th

 panel is γj sj. In turn, the total circulation due to all the 

panels is 

 

……Equation 1.44 

Hence, the lift per unit span is obtained from 

 

……Equation 1.45 

 

1.5 Mathematical Properties of Fluid Dynamic Equations –  

Elliptical, Parabolic and Hyperbolic Equations 

 The solution procedure of a partial differential equation (PDE) depends upon the type of 

equation, thus it is important to study the various classifications of PDE‘s. Imposition of the 

initial or boundary condition also depends upon the type of PDE.  

Linear and Nonlinear PDE’s 

Linear PDE: In a Linear PDE the dependent variable and its derivative enter the equation 

linearly, i.e. there is no product of the dependent variable or its derivatives.  

Example: One dimensional wave equation 

  

  
   

  

  
 

……Equation 1.46 

 Where, a is the speed of sound which is assumed constant 

Nonlinear PDE: A Nonlinear PDE contains product of the dependent variable and its derivative.   

Example: Inviscid Burgers equation 

  

  
   

  

  
 

……Equation 1.47 

Second-Order PDE’s  

 To classify the second-order PDE, Consider the following equation 
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……Equation 1.48 

Where the coefficients A, B, C, D, E, F and G are functions of the independent variables x and y 

and of dependent variable Φ. By the definition we can express dΦx and dΦy as  

 

……Equation 1.49 

The equation 1.48 can be expressed as 

 

……Equation 1.50 

Where,  

 

Equations 1.49 and 1.50 are solved for Φ, using the cramers rule we get,  

 

Since it is possible to have the discontinuous in the second order derivatives of the dependent 

variable across the characteristics, these derivatives are indeterminate. Thus setting the 

denominator equal to zero. 

 

Yields the equation 
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……Equation 1.51 

Solving this quadratic equation yields the equation of the characteristic in physical space.  

 

……Equation 1.52 

Depending on the value of B
2
-4AC the characteristic curves are real or imaginary. They are 

classified as,  

 

Elliptical Equations 

 A partial differential equation is elliptical in a region if B
2
-4AC is less than zero at all 

points in the region. An elliptic PDE has no real characteristic curves. A disturbance is 

propagated instantly in all directions within the region. The domain of solution of a elliptical 

equation is a closed region. 

Example:  

 Laplace equation 

 

……Equation 1.53 

 Poisson‘s equation 

 

……Equation 1.54 

 

 

Parabolic Equations 
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 A partial differential equation is parabolic in a region if B
2
-4AC is equal to zero at all 

points in the region. A parabolic PDE has solution domain as open region. An parabolic PDE has 

one real characteristic curve.  

Example:  

 Unsteady heat conduction in one dimension 

 

……Equation 1.55 

 Diffusion of viscosity equation 

 

……Equation 1.56 

Hyperbolic Equations 

 A partial differential equation is called hyperbolic if B
2
-4AC is greater than zero at all 

points in the region. A hyperbolic PDE has two real characteristic curves.  

Example: 

 Second-order wave equation 

 

……Equation 1.57 


