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UNIT II - DISCRETIZATION 

Boundary Layer Theory and Its Importance  

Boundary Layer Equations and Methods of Solution-Implicit Time Dependent Methods for 

Inviscid and Viscous Compressible Flows-Concept of Numerical Dissipation- Stability 

Properties of Explicit and Implicit Methods-Conservative Upwind Discretization for 

Hyperbolic Systems-Further Advantages of Upwind Differencing 

 

Boundary Layer Equations and Methods of Solution 

Prandtl made an important contribution to the calculation of a specific type of flow for which 

the Reynolds number is very large. The Reynolds number has the form of a non-dimensional 

parameter 

 
Where L is a characteristic length, usually the length of the considered body, V is the velocity 

of the flow where it is well-defined and undisturbed. The kinematic and dynamic viscosity is 

denoted by v and μ, respectively. The density of the fluid is ρ. The Reynolds number is the 

ratio of inertia to friction forces following the principle of similarity 

 
The velocity u at some point in the velocity field is proportional to the free stream velocity V. 

The velocity gradient ∂u/∂x is proportional to V/L and similarly ∂2u/∂x2 is proportional to V/L2. 

Hence the ratio, Eq. (2) yields 
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 Figure 1:Boundary layer flow along a wall 

 

Two flows are similar from the point of view of the relative importance of inertial and 

viscous effects if the Reynolds number is constant. Now the physical phenomenon of a flow with 

high Reynolds number is considered for the example of a cylindrical body shown in Fig. 1. 

With the exception of the immediate neighborhood of the surface the flow velocity is 

comparable to the free stream velocity V. This flow region is nearly free of friction; it is a 

potential flow. Considering the region near the surface there is friction in the flow which means 

that the fluid is retarded until it adheres at the surface. The transition from zero velocity at the 

surface to the full magnitude at some distance from it takes place in a very thin layer, the so-

called ‗boundary layer‘. Its thickness is δ, which is a function of the downstream coordinate x 

and is assumed to be very small compared to the length of the body L. In the normal direction y 

inside the thin layer it is clear that the gradient ∂u/∂y is very large compared to gradients in the 

stream wise direction ∂u/∂x. Although the viscosity was meant to be very small in this flow the 

shear stress η = μ(∂u/∂y) may assume large values. Outside the boundary layer the velocity 

gradients are negligibly small and the influence of the viscosity is unimportant. The flow is 

frictionless and potential. 

The above assumptions are now used to simplify the Navier–Stokes equations for steady 

two-dimensional, laminar and incompressible flows, resulting from the non-conservation form 

by a formal procedure. Including the continuity equation they have the following dimensional 

form in Cartesian coordinates 

---------------------------- 4 

 

--------------------------- 5 

 

-------------------- 6 

 



Computational Fluid Dynamics 
 

56 
 

Here the velocity components ¯u and ¯v are directed towards the downstream ¯x and the 

normal ¯y-direction, respectively. The static pressure is denoted by ¯p, ¯ρ is the density and ¯μ is 

the dynamic viscosity of the fluid. 

For convenience, this set of second order differential equations is non-dimensionalized which 

involves the Reynolds number necessary for the following reduction of the equations. The 

prescriptions for non dimensionalization are: 

----------------- 7 

V is the dimensional free stream velocity and the pressure is non-dimensionalized by twice 

the dynamic pressure, 

 

Using these definitions, Eqs. (4), (5) and (6) become: 

--------------------- 8 

--------------- 9 

----------------------- 10 
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Now the question is, what order of magnitude do the dimensionless substitutions Eqs. (8.7) 

have? As stated above, the boundary layer thickness δ is very small, so is the distance y 

compared to the length of the body L. Consequently y is of the order ε which describes a value 

much smaller than 1. The u-velocity component can reach the maximum value of V, therefore it 

is of the order 1. But the v-velocity component also has to be of the order ε as can be seen from 

the continuity equation, Eq. (8.10).If the derivative ∂u/∂x is of the order 1 because x becomes, at 

its maximum, the length L, then the second term in the continuity equation ∂v/∂y has also to be of 

the order 1. Consequently, v is not greater than ε. Now, with these assumptions the order of 

magnitude analysis can be done. It follows from the first equation of motion, Eq. (8.8), that the 

viscous forces in the boundary layer can become of the same order of magnitude as the inertia 

forces only if the Reynolds number is of the order of 1/ε
2
. The equation of continuity remains 

unaltered for very large Reynolds numbers. 

The equation of continuity remains unaltered for very large Reynolds numbers. The 

downstream momentum equations can be reduced by the second derivative of the u-velocity 

component ∂
2
u/∂x

2
 and multiplied by 1/Re because it has the smallest order of magnitude in this 

equation. It only holds that the forcing function term (−dp/dx) will not exceed the order of 1 to be 

in balance with the other remaining terms. 

All terms of the normal momentum equation, Eq. (8.9), are of a smaller magnitude than 

those of Eq. (8.8). This equation can only be in balance if the pressure term is of the same order 

of magnitude. Therefore, this equation delivers the information of negligible pressure gradient in 

the normal direction, i.e. 

 
The meaning of this result is that the pressure is practically constant; it is ‗impressed‘ on 

the boundary layer by the outer flow. Therefore, the pressure p is only a function of x. 

The derivation of Eq. (8.8) at the outer edge of the boundary layer gives, if the Inviscid 

velocity distribution U(x) = ¯u(x)/V is known: 

      ----------------- 

The other terms involving ∂u/∂y are zero since there remains no large velocity gradient. 

After integration of Eq. (8.12) the well-known Bernoulli equation is found: 
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----------------------- 

Summing up , by the order of magnitude analysis the Navier–Stokes equations, Eqs. (8) 

and (9), and the continuity Eq. (10), have been simplified. They are known as ‗Prandtl‘s 

boundary layer equations‘:  

-----------11 

 

------------------- 12 

 

---------13 

The boundary conditions are: 

On the surface: 

------14 

On the outer edge of the boundary layer: 

-----------15 

 

This set of equations is reduced by the unknown pressure p, which is, because of 

Bernoulli‘s equation, Eq. (8.13), a known value now, if only the inviscid velocity distribution at 

the surface U(x) is provided. It is still a coupled, non-linear, second order set of differential 

equations.  

The order of magnitude analysis also described by Schlichting [6] is well suited to 

analyse the more complicated surface-oriented Navier–Stokes equations with additional surface 

curvature created Coriolis and centrifugal forces. At least the order of magnitude analysis gives 

an impression where the boundary layer equations and their more complicated extensions are 

situated in their level of approximation to the full Navier–Stokes equations. This overview will 

be given in the next section. 
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HIERARCHY OF THE BOUNDARY LAYER EQUATIONS 

To develop a hierarchy of the fluid mechanical equations, the steady, compressible, laminar, 

two-dimensional Navier–Stokes equations should be written for the Euclidian space in a layer 

close to the surface. This will say that a coordinate system, which may be surface oriented for a 

better adaption to the flow problem considered, is related to the cartesian coordinate system. 

Both systems must be transferable from one to the other. The cartesian and the polar coordinate 

system, for example, are matched together following this demand of Euclidian space. In other 

words, the Jacobian matrix must exist. 

 

   If the Navier–Stokes equations can be formulated for such a surface-oriented coordinate 

system, they will contain many additional terms due to the surface curvature. These terms can be 

understood as Coriolis and centrifugal force terms caused by the change of the streamlines in 

downstream as well as in the cross flow direction depending on the curvature of the surface. 

Curvature-induced terms will have different orders of magnitude. Some are important and others 

can be neglected depending on the specific flow problems. 

Now the question is to set the boundary layer equations including curvature terms in relation 

to Prandtl‘s boundary layer equations developed in the foregoing chapter. 

A simple two-dimensional surface-oriented coordinate system is fixed on an airfoil-like 

contour sketched in Fig. 1. The relations between the new coordinate system and the cartesian 

one are: 

 ------------------------------------------ 1 

           ------------------------------------------- 2 

The resultant set of differential equations due to the coordinate transformation consists of 

two equations of motion in the downstream direction s and the perpendicular direction n, the 

energy and the continuity equations. 
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Fig. 1 Surface oriented coordinate system 

 

Momentum equation in tangential direction: 

----------------3 

Momentum equation in normal direction: 

---------- 4 

Energy equation: 

---------------- 5 

Continuity equation: 

------------- 6 

 
Here u and v are the velocity components in the tangential direction of the flow s and the 

normal direction n, respectively. The pressure is denoted by p, ρ is the density, μ and λ are the 

dynamic viscosity and the thermal heat conductivity, respectively. The curvature of the surface is 
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involved in the geometrical coefficient H. This dimensional set of differential equations 

describes the laminar, compressible flow along arbitrary, two-dimensional curved surfaces. 

Now these governing equations are analysed by predicting the order of magnitude of each 

term. As is usually done, the equations will be non-dimensionalized, the geometrical quantities 

by a characteristic length L and the flow properties by their free stream conditions denoted by 

subscript ∞. The order of magnitude of these quantities is defined as has been done in the case of 

a simple boundary layer without curvature in the preceding chapters. 

------------------------ 7 

It is to be mentioned that the radius of curvature R is not allowed to be much larger than the 

characteristic length L, otherwise κ would belong to another order of magnitude. The radius of 

curvature R is related to the curvature as follows 

------------ 8 

When the radius R becomes very small compared to the length, H can exceed the order 

demanded above. 

The combination of Eq. (7) with the governing equations, Eqs . (3), (4), (5) and (6), provides 

the order of magnitude of each term. A detailed development of the order of magnitude analysis 

applied to this set of equations seems not to be necessary here because in the preceding chapter 

an example was already presented. But in order to give an insight into the origin of the hierarchy 

of the boundary layer equations, the equations will be shown that retain terms only of the order 

0(1) and 0(ε). The chosen equation is the tangential and normal momentum equation in 

dimensional unbarred form. 
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Order 0(1): 

----- 9 

                                ------ 10 

These equations, including the continuity equation, are called the ‗first order boundary layer 

equations‘. Curvature effects are included in the quantity H defined in Eq. (6). These equations 

become identical to Prandtl‘s boundary layer equations when the curvature goes to zero. Hence, 

Prandtl‘s equations are the lowest level of the hierarchy and therefore they should be called 

‗Zeroth order boundary layer equations‘. 

Now terms of the order 0(1) and 0(ε) are retained. 

Order of magnitude 0(ε): 

------8.29 

----------------8.30 

These equations show a significant extension of the foregoing ones. In Eq. (8.29) an 

additional centrifugal term κuv appears as well as dissipative terms due to curvature on the right-

hand side; but the most important extension appears in the normal momentum equation, Eq. 

(8.30). The pressure gradient normal to the flow is no longer zero. Eq. (8.30) is an integral 

equation for the pressure which is no longer impressed on the boundary layer from the Inviscid 

flow. These equations are the so-called ‗second order boundary layer equations‘ and take into 

account that, even in the outer Inviscid flow normal to the surface, there exist velocity gradients 

due to the streamline curvature. The outer edge of the boundary layer is matched to this gradient 

which is no longer equal to zero as the first order of boundary layer theory prescribes. 

Consequently terms of higher order than 0(ε) will be retained now. The result is summarized in 

Table 8.1. 

A decisive development takes place proceeding from the second to the third-order set. 

The mathematical character of the equation changes from parabolic to elliptic. Elliptic 



Computational Fluid Dynamics 
 

63 
 

differential equations are pure boundary value problems while parabolic equations are initial-

boundary value problems. The latter can be solved by the so called ‗marching procedure‘, but the 

former require the calculation of the entire flow field surrounded by the boundaries which 

implies a greater numerical effort. 

The conclusion of this discussion is that a boundary layer theory of order higher than 

second order immediately leads to elliptic equations. This complicates the method of solution 

because the parabolic approach of the original idea of boundary layer theory no longer holds. 

 

The subject of the following chapter will be to give an impression as to how 

transformations of the governing first-order boundary layer equations influence the solution 

techniques positively. 

 

Table 8.1 Hierarchy of the boundary layer equations 

 

Numerical Solution Method: 

Choice of Discretization Model 

 
To come to a numerical solution of a set of partial differential equations it is usual to 

replace the differential quotients by finite difference quotients taking into account that a 

truncation error of a certain order of magnitude will now be induced to the set of equations. By 

rearranging the finite difference equations a system of algebraic equations is obtained which can 

be solved by means of the known methods. The techniques of the discretization are detailed in 
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Chap.5. It is stated there that the choice of the computational discretization grid is important as it 

affects the truncation error, the stability and the consistency. The form of these grids and the 

solution methods to which they lead will be summarized briefly. 

Parabolic equations as observed here have a first order differential in the marching 

direction. As the flow is not allowed to reverse, the values of each quantity at the last upstream 

grid line normal to the surface are known. If we consider a grid as shown in Fig. 8.3, where Δx 

and Δy are the step sizes in the tangential and normal direction to the surface, the known points 

are on the left-hand side and the unknown on the right. Also the boundary conditions at the wall 

are given. Therefore, it is easy to calculate the flow quantities at the point with the open circle 

using discretization models as already given in Chap. 5. Because of the direct calculation of only 

one point on the grid line, this is called an ‗explicit method‘. The explicit method causes strong 

restrictions in the choice of the downstream step size as will briefly be repeated later, so the 

scheme is slow. 

 

Grid for an explicit method 

 

Grid for a fully implicit method 

 

Figure 8.4 shows another extreme choice of a computational grid; the so-called ‗fully 

implicit method‘. 
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Only one known grid point from the preceding step is used, while on the actual one all 

points are unknown except the boundary values. That leads to an implicit form of the set of 

algebraic equations as will be shown later. This method is, concerning the choice of the step size, 

unconditionally stable but may lead to a poor accuracy. If there is no restriction on the step size 

in the downstream direction it becomes a fast calculation method which is desirable. 

Now it is obviously possible to formulate something in between these extremes which 

will result in both a fast and accurate solution method. Figure 8.5 gives the computational mesh 

proposed by Crank–Nicholson [13] but in a more general form, so that the discretization methods 

described before are contained within it as special cases. Here, all points of the known and 

unknown grid lines are involved, but now the centre of discretization is located at the point i + λ. 

λ = 1/2 was originally proposed by Crank–Nicholson. Although the pure Crank–Nicholson 

scheme was described in detail in Part I, an example of a linear model equation is utilized to 

show its discrimination by the more generalized Crank–Nicholson scheme. In a following 

section the application to the two dimensional, rotational compressible boundary layer equations 

will be given. 

 

Grid for a generalized implicit method 

 

Generalized Crank–Nicholson Scheme 

This section is taken directly from Arina & Benocci [5]. In order to analyse the stability 

and accuracy of a generalization of the Crank–Nicholson scheme, it isconvenient to utilize the 

linear model Eq. (8.40), 

------------8.40 
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Equation (8.40) is discretized around the mesh point (i + λ, j), with λ ranging between 0 and 1. 

For λ = 0 an explicit scheme is recovered, while λ = 1 corresponds to the fully implicit case. If 

the grid is uniform, the x-derivative is approximated by the finite difference relation developed in 

Sect. 5.2.1. 

 

and the y-derivative is replaced by the weighted mean 

 

 

Each second-order derivative is then replaced by the usual three-point centred finite difference 

relation: 

 

 

 

Substituting Eqs. (8.41, 8.42, 8.43) into equation (8.40), a linear difference equation is obtained 

 

 which can be recast in the usual tridiagonal form 

 

with Dj a function of θ computed at station i. 

To perform the von Neumann stability analysis it is useful to express the numerical 

solution as a Fourier series, and then verify that none of the harmonics is amplified with respect 

to the evolution coordinate x. This stability analysis is described in detail in Sect. 4.4; Part I, and 

is repeated here as a reminder. Hence putting 
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where I in the exponent is the unit complex number, and ρi is the amplification factor at level i, 

and then substituting inside Eq. (8.45), actualizing the indices in Eq. (8.46), we have 

 

To have stability, |G| ≤ 1 for all harmonics ωΔy; this inequality together with Eq. (8.47), leads to 

the following stability condition for 0 ≤ λ < ½ 

 

where C = aΔx/Δy2. For 1/2 ≤ λ ≤ 1 no stability restriction is imposed on C. Hence the scheme 

presented is unconditionally stable for values of λ equal or larger than 1/2. In the case of the 

explicit scheme (λ = 0), there is a strong limitation to Δx if Δy is chosen rather small for accuracy 

requirements. 

The consistency of the scheme can easily be verified expanding in Taylor series all other 

terms of Eq. (8.45) about the point (i+λ, j). The discretization error can be proved to be of 0(Δx, 

Δy2) if λ is not equal to 1 (Ref. [14]). The scheme is therefore second order accurate with respect 

to y and first-order with respect to x. To obtain second order accuracy with respect to x, λ should 

be taken equal to 1/2 (Crank–Nicholson scheme), or slightly different to 1/2 (e.g. = 1/2 + 0(Δx)). 

However, for practical, non-linear problems it is often necessary to increase λ in order to avoid 

non-linear instabilities. For instance, the full implicit scheme is often very stable, but leads to a 

worse accuracy. 

Equation (8.40) is a linear partial differential equation employed as a model to 

demonstrate the widely used generalized implicit Crank–Nicholson solution code. Now this will 

be applied to the boundary layer Eqs. (8.31), (8.32) and (8.33) of Sect. 8.4. 


