

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech. IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF AEROSPACE ENGINEERING

Faculty Name	:	Dr.A.Arun Negemiya, ASP/ Aero	Academic Year	:	2024-2025 (Even)
Year & Branch	:	III AEROSPACE	Semester	:	VI
Course	:	19ASB304 - Computationa	al Fluid Dynamics f	or A	erospace Application

UNIT II – DISCRETIZATION

Concept of Numerical Dissipation

Definition of Numerical Dissipation

As mentioned above, the question of numerical dissipation arises for advection-dominated problems. Numerical dissipation is therefore defined by the advection (wave) equation:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$

9 This equation describes the transport of the quantity u with speed c. Its general solution is u = f

(x-ct). A particular solution is the periodical solution.

$$u = e^{ik(x-ct)} = e^{ikx}e^{-i\omega t}$$
 with $\omega = kc$

Which represents the unattenuated propagation of a wave of length $2\pi/k$ with speed c. Let us compute the amplification ion factor $u(x, t+\Delta t)/u(x, t)$ for the exact solution. We find $\frac{u(x,t+\Delta t)}{u(x,t)} = e^{-i\omega\Delta t} = e^{-i\mu t}$

with

$$v = \frac{c\Delta t}{\Delta x}$$
 CFL number
 $\eta = k\Delta x$ dimensionless wave number

A numerical solution will yield.

$$\frac{u_i^{n+1}}{u_i^n} = g(\eta, \nu)$$

When one wishes to accurately follow a true unsteady phenomenon, one desires to have $g(\eta, v)$ as close as possible to $e^{-i\eta v}$. For stability, one must have $|g(\eta, v)| \le 1$ for all η . The difference between $|g(\eta, v)|$ and 1 is called *dissipation* or else *dissipative error*, and the difference between $\arg(g(\eta, v))$ and $-\eta v$ is called *dispersion* or *dispersive error*.