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UNIT II – DISCRETIZATION 

Conservative Upwind Discretization for Hyperbolic Systems 

It will be shown how conservative upwind discretizations of hyperbolic systems such as the 

Euler equations can be constructed. 

When systems of conservation laws like the Euler equations are considered, the extension of 

upwind schemes poses a problem, in the sense that wave speeds of both signs can be 

simultaneously present. Indeed, the characteristic speeds associated with the unsteady 1D Euler 

equations 

 

Are u, u+a, and u−a, so that speeds of both signs exist when the flow is subsonic? It is then 

impossible to use a biased discretization of the whole flux vector F since this would lead to a 

downwind discretization for one of the waves. If one considers the quasi-linear form of the 

equations, then one can decompose the original system in characteristic equations and upwind 

each equation according to the corresponding wave speed sign (Courant-Isaacson-Rees scheme 

[8]) but this approach does not satisfy the conservation property which is crucial for the correct 

treatment of discontinuities (Part I, Sect. 2.9). This is the main reason why schemes based on 

a central space discretization such as the Lax-Wendroff scheme and schemes involving 

artificial diffusion have been so popular in the sixties and seventies. Indeed, these schemes are 

indifferent to wave speed signs and therefore extend readily to systems: 
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The early eighties have seen the development of conservative upwind schemes, which 

have since become extremely popular, because of their crisp resolution of discontinuities and 

their superior ability in following moving shock waves. The remainder of this section will 

therefore be devoted to a brief presentation of the two major families of conservative upwind 

schemes. 

Flux Difference Splitting (FDS) Schemes — Approximate Riemann Solvers 

The starting point of Flux Difference Splitting scheme is the scheme developed in the late 

fifties by the Russian mathematician Godunov [17] for the unsteady 1D Euler equations. This 

scheme is based on the integral form of the equations.9 The integral form of the unsteady 1D 

Euler equations (9.36) is 

 

For the numerical solution of the problem, the domain of interest is divided up into 

intervals (cells in the finite volume terminology) and the unknowns of the numerical solution Ui 

are the average flow quantities over the corresponding interval (see Fig. 9.13) rather than point 

values as in the finite difference method. The boundaries of interval i are noted i±1/2. As 

illustrated in the figure, the intervals need not be of constant length (hi−1 _ hi _ hi+1). The first 

step in Godunov‘s method consists in reconstructing a piecewise continuous distribution of the 

flow variables from the cell averages. The simplest choice is a piecewise constant reconstruction 

as illustrated in the figure.10 At the interval interfaces, the flow variable distributions are thus 

discontinuous. Now, there exists an exact solution of the 1D Euler equations for initial data 

consisting of two constant states separated by a discontinuity—this problem is known in the 

literature as the Riemann problem, and applies in particular to the flow in a shock tube. The 

solution consists of elementary waves (shock wave, contact discontinuity, expansion wave) 

originating from the interface, as illustrated in Fig. 9.14 for the shock tube problem. An 

interesting property of the solution is that flow variables are constant along straight lines in x−t 

space (which implies that the solution is self-similar). In particular, it is constant in time at the 

location of the interface. As long as the two solutions at each interface of an interval do not 

interact (which imposes an upper bound on the time step), it is thus possible to compute the exact 
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solution at the new time level from the initial piecewise constant data. This constitutes the 

second step in Godunov‘s method, called the evolution step. From 

 

Finite volume representation 

 

Schematic representation of the solution of the Riemann problem 

the exact solution at the new time level, it is then possible to compute the new cell averages in 

order to restart the process. This constitutes the third step of the method, called projection step. 

 

Actually, it is possible to compute directly the cell averages at the new time level without 

computing the details of the solution. Indeed, integrating in time between tn and tn+1 = tn+Δt the 

integral form of the equations applied to interval i, one finds 
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or dividing through by hiΔt, 

 

from which we deduce that Godunov‘s scheme is a conservative discretization of   the 1D Euler 

equations with the numerical flux function 

 

combined with forward Euler time stepping. That this is an upwind discretization clearly 

shows up by applying it to the linear advection equation. Since the exact solution of the linear 

advection equation is the initial solution moving with speed c, it results that (for c > 0) 

 

and one recovers the first-order upwind discretization. 

The essential drawback of Godunov‘s scheme is that the computation of U exact (xi+1/2, 

t) requires the solution of a non-linear algebraic problem, i.e. it is computationally expensive. 

Now, as most of the information contained in the exact solution is lost by the averaging process, 

Roe [34] suggested to replace the exact Riemann problem by a linearized problem 
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The first condition is required for consistency, the second ensures that the linearized 

problem has a solution, and the third condition is a sufficient condition for the scheme to be 

conservative. It also has the nice additional property that the solution of the linearized problem is 

identical to the solution of the exact problem when a single wave is present. 

 

Now, the solution of the linearized problem is found quite easily by the theory of 

characteristics. Multiplying the linearized equation by the matrix L of left eigenvectors of 

˜Ai+1/2, one obtains 

 

 

Where Λ is the (diagonal) matrix of eigenvalues of ˜Ai+1/2. These are decoupled linear 

advection equations for the characteristic variables, components of the vector LU. For the 1D 

Euler equations, there are three components. Noting 

 

and arranging the eigenvalues in increasing order, the solution of the linear problem is 

schematically shown in Fig. 9.15 (in terms of characteristic variables) and for the case of the 

figure (λ1 < 0, λ2, λ3 > 0), 

 

 

 

Solution of the linearized Riemann problem 
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relations from which it appears that the flux difference Fi+1 −Fi has been split into a positive 

and a negative part to calculate Fi+1/2, whence the name Flux Difference Splitting. By this 

splitting of the flux difference, the scheme automatically adapts the difference scheme to the 

local flow quantities. It is thus a solution-adaptive differencing scheme as alluded to in the 

introduction. 

Averaging the two previous expressions, the following (third) form of Roe‘s scheme is obtained: 

 

 

Now, this has exactly the same form as the artificial diffusion flux formula (9.37) except that the 

diffusion coefficient is replaced here by a diffusion matrix. 

 

The Flux Difference Splitting approach pioneered by Roe has met with a considerable success. 

Several schemes of this type, also called Approximate Riemann solvers, were developed since 

the beginning of the eighties [13, 15, 33, 38], among which the most popular is certainly Osher‘s 

scheme [33]. 
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Flux Vector Splitting (FVS) Schemes 

The idea of flux vector splitting was introduced in computational fluid dynamics by 

Steger and Warming [40]. The idea had been previously proposed in astrophysics by Sanders and 

Prendergast [36] but was rediscovered independently by Steger and Warming. The starting point 

of Steger and Warming‘s scheme is the observation that the compressible inviscid fluxes are 

homogeneous functions of degree 1 in the conservative variables. Consequently, by a theorem 

due to Euler, 

 

Now, the flux Jacobian matrix A is fully diagonalizable and it is possible to split it between its 

positive and negative parts (see previous paragraph) 

 

to which correspond the split fluxes 

 

Now, the split fluxes F± being associated with positive (respectively negative) eigenvalues only, 

it is possible to use upwind difference formulas to discretize the corresponding flux derivatives. 

 

The Steger and Warming flux vector splitting suffers from a lack of continuity at those points 

where an eigenvalue of A vanishes (stagnation and sonic points). 

 

To remedy this problem, van Leer developed an alternative, continuous, flux vector splitting 

[45], which is no longer based on the homogeneity property of the inviscid flux vectors. The 

basic requirements are 

 the split fluxes sum up to the whole flux: F+ +F−= F; 

 the split fluxes Jacobians have positive (respectively negative) eigenvalues only; 

 F
−
= 0 for supersonic flow (respectively F+ = 0 for supersonic flow with negative 

velocity). 
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Van Leer imposed a few additional requirements in particular to ensure the crisp resolution 

of discontinuities. 

 

  

 

The flux vector splitting approach and van Leer‘s scheme in particular have become 

extremely popular in the CFD community [37, 43], but it was soon realized that flux vector 

splitting schemes are excessively dissipative at contact discontinuities (boundary and shear 

layers) [46]. To avoid this while keeping the robustness of flux vector splitting schemes, an 

improved flux vector splitting scheme was recently developed by Liou and Steffen [30](AUSM 

scheme). Jameson‘s CUSP scheme [25], although formulated in the artificial diffusion 

formalism, appears essentially equivalent to this latter scheme. Finally, Coquel and Liou [6] have 

proposed a procedure to construct hybrid flux vector/flux difference splitting schemes to 

combine the robustness of the flux vector splitting schemes with respect to strong shock and 

expansion waves and the accuracy of flux difference splitting schemes with respect to contact 

discontinuities. They examine in particular the van Leer/Osher hybrid, which provides results of 

comparable accuracy as Osher‘s scheme for viscous flow calculations at a cost only slighly 

superior to van Leer‘s FVS scheme. 


