



# Unit 1

### Case-Based Problem on Duty, Delta, and Base Period

#### Case Scenario:

A farmer is cultivating **wheat** in an irrigated field. The **base period** of wheat is **120 days**, and the crop requires **60 cm (0.6 m) of water** over the entire growing period. The available water supply is **1 cubic meter per second (cumec)**, and the field area is **800 hectares**.

The farmer needs to understand:

- 1. The **duty** of water for wheat.
- 2. The **delta** (total water depth needed).
- 3. The significance of these values for irrigation planning.

#### **Concepts Explained**

#### 1. Duty (D)

- **Definition:** Duty is the area of land (in hectares) that can be irrigated by **1 cumec of water** continuously throughout the base period of the crop.
- **Formula:**  $D=8.64 \times B\Delta D = \frac{8.64}{\text{times B}} \Delta D = \Delta 8.64 \times B$  where:
  - DDD = Duty in hectares per cumec
  - BBB = Base period in days
  - $\Delta\Delta\Delta$  = Delta (depth of water required in meters)

#### 2. Delta (Δ)

- **Definition:** Delta is the total depth of water required by a crop during its growth period.
- **Given:** Delta for wheat = **0.6** m

#### 3. Base Period (B)

- **Definition:** The base period is the total time (in days) from the first watering to the last watering of the crop.
- **Given:** Base period for wheat = **120 days**





#### **Numerical Solution**

#### Step 1: Calculate the Duty

Using the duty formula:

$$D = \frac{8.64 \times 120}{0.6}$$
$$D = \frac{1036.8}{0.6}$$

#### D = 1728 hectares per cumec

#### Interpretation:

This means **1 cumec of water can irrigate 1728 hectares of wheat** over the entire base period of 120 days.

#### Step 2: Compare with Available Land

- Given farm size = **800 hectares**
- Water available = **1 cumec**
- Since **Duty (1728 ha per cumec) > Required (800 ha)**, the available water supply is sufficient to irrigate the field.

#### **Final Explanation & Importance**

- Why is Duty Important?
  - It helps in determining **how much land can be irrigated with a given water supply**.
  - It is **inversely proportional to delta** (i.e., if a crop requires more water, its duty will be lower).
- Why is Delta Important?
  - It helps in calculating **the total water requirement** of a crop.
  - It allows engineers to design proper water storage and irrigation schedules.





# • Why is Base Period Important?

- It determines the **continuous flow duration** needed in the irrigation system.
- A longer base period means **a lower discharge rate** can be used over time.

#### **Practical Application**

- If duty is too high, water is used efficiently, and irrigation canals need lower capacity.
- If delta is high, more water is needed, and irrigation systems must be designed for higher flow rates.
- **For planning an irrigation schedule**, farmers and engineers use these values to optimize water distribution.

#### Conclusion

- Duty for wheat = 1728 hectares per cumec
- Delta for wheat = 0.6 m
- Base period = 120 days
- The farmer **has sufficient water** to irrigate the 800-hectare field using 1 cumec supply.

This approach ensures **optimal water use, reduced wastage, and better crop yield**!





# **Consumptive Use of Crops**

# 1. Definition of Consumptive Use

Consumptive use of water (CU) refers to the **total quantity of water used by plants for transpiration and evaporation** from the soil and plant surfaces. It is also known as **evapotranspiration (ET)**.

#### Formula:

CU = Evaporation + Transpiration

#### 2. Factors Affecting Consumptive Use

#### 1. Climatic Factors

- Temperature (Higher temperature  $\rightarrow$  More transpiration)
- Humidity (Lower humidity  $\rightarrow$  More evaporation)
- Wind Speed (Stronger winds  $\rightarrow$  Higher water loss)
- Solar Radiation (More sunlight  $\rightarrow$  More water demand)

#### 2. Crop Factors

- Type of crop (Water-intensive vs. drought-resistant crops)
- Growth stage (Young plants use less water than mature ones)
- Root depth (Deeper roots extract more water)

#### 3. Soil Factors

- Soil texture (Sandy soils drain quickly, leading to higher CU)
- Soil moisture availability
- Organic matter content

#### 4. Agricultural Practices

- Irrigation method (Drip irrigation reduces CU compared to surface irrigation)
- Mulching (Reduces evaporation losses)
- Plant density (Higher density  $\rightarrow$  More transpiration)





# 3. Methods to Estimate Consumptive Use

#### **A. Experimental Methods**

# 1. Lysimeter Method:

- Measures actual water loss from the soil and plants.
- Provides accurate field data.

# 2. Field Observations:

- Measures soil moisture depletion.
- Uses pan evaporation method to estimate CU.

# **B.** Theoretical Methods

- 1. Blaney-Criddle Formula:
  - Based on temperature and sunshine hours.

$$CU = K \times P \times T$$

where:

- K = Crop coefficient
- P = Mean daily percentage of annual daytime hours
- T = Mean monthly temperature (°C)

# 3. Penman-Monteith Equation:

• Uses multiple weather parameters for accurate ET estimation.





# **Case-Based Explanation**

# Case Scenario: Wheat Cultivation in a Semi-Arid Region

A farmer is growing **wheat** in a **semi-arid region** where temperatures are high and rainfall is low. He notices that his crops require frequent irrigation, but water availability is limited. He wants to understand **how much water his crops are consuming** and how to manage it effectively.

#### Analysis:

- Given Data:
  - **Temperature:** 30°C
  - **Crop Growth Stage:** Mid-growth
  - Soil Type: Sandy loam
  - Irrigation Method: Surface irrigation
  - Estimated ET (Evapotranspiration) per day: 5 mm
- Problems Observed:
  - High **evaporation** due to high temperature.
  - Frequent **transpiration** from crops.
  - **Water loss is high**, leading to inefficient irrigation.

# **Solution Approach:**

1. Estimate Consumptive Use Using Blaney-Criddle Formula:

$$CU = K \times P \times T$$

- Assume K=0.85 (for wheat)
- P=30% (based on seasonal sunshine hours)
- T = 30°C

$$CU=0.85 imes 30 imes 30$$

CU = 765 mm over the season





- 2. Water Management Recommendations:
- Switch to **drip irrigation** to reduce evaporation losses.
- Use **mulching** to minimize soil evaporation.
- Adjust **irrigation scheduling** to water during cooler parts of the day.

#### Conclusion

- Consumptive use determines total water needs for crops.
- Estimating CU helps in water management and irrigation planning.
- Using efficient irrigation methods can reduce water loss and improve crop yield.

This approach helps **optimize water usage and increase agricultural productivity** in waterscarce regions!