

Unit 1

1. Tank Irrigation

Definition:

Tank irrigation involves storing rainwater in artificially constructed reservoirs or tanks for later use in irrigation.

Features:

- Common in South India (Tamil Nadu, Karnataka, Andhra Pradesh).
- Tanks are generally **earthen embankments** constructed across small streams.

Merits:

- Provides **water storage** for dry seasons.
- Improves **groundwater recharge**.
- Suitable for **undulating terrains** where canal irrigation is difficult.

Demerits:

- X Evaporation losses are high.
- X Limited water storage capacity.
- X Requires **regular desilting** for maintenance

2. Well Irrigation

Definition:

Water is **lifted from underground sources** using wells for irrigation.

Types of Wells:

- 1. **Open Wells:** Shallow wells with water drawn by buckets or pumps.
- 2. **Tube Wells:** Deep wells (20-100m), fitted with pumps for large-scale irrigation.

Merits:

- Independent water supply for farmers.
- Helps **recharge groundwater** with excess water.
- **Less affected by seasonal changes** compared to tank irrigation.

Demerits:

- X Over-extraction leads to groundwater depletion.
- X Initial cost of **tube wells is high**.
- X Requires **continuous electricity or diesel** for pumping.

3. Surface Irrigation

Definition:

Water is applied **directly to the land surface** and allowed to **flow by gravity**.

Types of Surface Irrigation:

- 1. Flood Irrigation: Entire field is covered with water.
- 2. Border Strip Irrigation: Water flows in parallel strips along the field.
- 3. **Check Basin Irrigation:** Fields are divided into small basins with controlled water entry.

Merits:

- **Simple and inexpensive** method.
- **Effective for heavy soils** with low infiltration rates.

Demerits:

- **X** High water wastage due to runoff and evaporation.
- X Not suitable for sandy soils due to quick drainage.

4. Sub-Surface Irrigation

Definition:

Water is supplied **below the soil surface**, reducing evaporation losses.

Types:

- 1. Natural Sub-Surface Irrigation: Water seeps from nearby water bodies or canals.
- 2. Artificial Sub-Surface Irrigation: Pipes or channels distribute water underground.

Merits:

- Prevents water loss due to evaporation.
- **Reduces weed growth** since surface soil remains dry.

Demerits:

- X High installation cost.
- X Requires **proper soil conditions** (not suitable for rocky soils).

5. Micro Irrigation

Definition:

Micro irrigation supplies water in small quantities close to the plant roots.

Types:

- 1. Drip Irrigation (Localized irrigation)
- 2. Sprinkler Irrigation (Overhead irrigation)

5.1 Drip Irrigation

- Water is delivered **drop by drop** at the root zone.
- **Best suited for:** Horticulture, orchards, and row crops.

Merits:

- Saves **50-70% of water** compared to flood irrigation.
- Reduces weed growth by keeping non-root areas dry.
- Minimizes soil erosion.

Demerits:

- **Clogging of drippers** is a problem.
- **X** High initial investment for pipes and emitters.

5.2 Sprinkler Irrigation

- Water is **sprayed like natural rainfall** using sprinklers.
- Best suited for: Sandy soils and uneven terrains.

Merits:

- 🗹 Uniform water distribution.
- **Less labor required** for operation.
- Suitable for **undulating and sloped lands**.

Demerits:

- X High wind speed reduces efficiency.
- X Requires electricity for pumping.

6. Ridge and Furrow Irrigation

Definition:

Water is applied in furrows (small channels) while crops grow on ridges.

Best for:

• **Row crops** like maize, sugarcane, and cotton.

Merits:

- **Improves water efficiency** by controlling flow.
- Prevents **waterlogging in crops**.
- Suitable for **deep-rooted crops**.

Demerits:

- **X** Requires **land leveling** for uniform furrow depth.
- **X** Not suitable for sandy soils with high infiltration.

Comparison Table of Irrigation Methods

Irrigation Type	Water Saving	Cost	Best Suited for	Umitations
Tank Irrigation	Low	Low	Rain-fed areas	High evaporation loss
Well Irrigation	Medium	Medium	Independent farmers	Groundwater depletion
Surface Irrigation	Low	Low	Large fields	High water wastage
Sub-Surface Irrigation	High	High	High-value crops	Expensive installation
Drip Irrigation	Very High	High	Orchards, row crops	Requires maintenance
Sprinkler Irrigation	Medium	Medium	Sandy & sloped land	Wind reduces efficiency
Ridge & Furrow	Medium	Low	Row crops (Maize, Sugarcanel	Requires field preparation

Conclusion

- Surface irrigation is traditional but wastes water.
- Micro irrigation (Drip & Sprinkler) saves 50-70% of water and is best for modern agriculture.
- Tank & well irrigation are region-specific.
- Choosing the right method depends on climate, crop type, and soil conditions.

Drip Irrigation

Localized Irrigation

Surface Irrigation

Manual Irrigation

Sub-Irrigation

Center pivot Irrigation

Sprinkler Irrigation