

Unit 1

Irrigation Efficiencies and Automation in Irrigation

1. Irrigation Efficiencies

Definition:

Irrigation efficiency is the ratio of the water beneficially used by crops to the total water supplied in the irrigation system. It indicates how effectively water is utilized in irrigation.

Types of Irrigation Efficiencies:

Efficiency Type	Definition	Formula
Water Conveyance Efficiency (ηc)	Efficiency of water transport from source to field	$\eta_c = rac{W_f}{W_s} imes 100$
Water Application Efficiency (ηa)	Efficiency of water applied to the field reaching plant roots	$\eta_a = rac{W_r}{W_f} imes 100$
Water Storage Efficiency (ηs)	Efficiency of soil moisture retention for crops	$\eta_s = rac{W_s}{W_r} imes 100$
Water Use Efficiency (ηu)	Efficiency of water consumed for crop growth (ET)	$\eta_u = rac{W_u}{W_r} imes 100$
Overall Irrigation Efficiency (ηο)	Combined efficiency from source to plant	$\eta_o = \eta_c imes \eta_a imes \eta_s$

Where:

- ullet W_s = Water supplied at the source
- ullet W_f = Water delivered to the field
- W_r = Water stored in the root zone
- ullet W_u = Water used by crops

Factors Affecting Irrigation Efficiency:

- **✓** Method of irrigation (Drip > Sprinkler > Surface)
- **✓** Soil type and infiltration rate
- **✓** Climate factors (temperature, wind speed, evaporation)
- **✓** Canal lining (reduces seepage losses)
- **✓** Automation and water management techniques

2. Automation in Irrigation

Definition:

Automation in irrigation refers to the use of technology and control systems to manage irrigation with minimal human intervention.

Types of Automated Irrigation Systems:

Automation Type	Working Mechanism	Advantages
Time-Based Irrigation	Watering at pre-set intervals using timers	Reduces labor effort
Sensor-Based Irrigation	Uses soil moisture sensors to activate irrigation when needed	Water-efficient, prevents over-irrigation
Remote-Controlled Irrigation	Controlled using mobile apps, IoT	Saves time, accessible from anywhere
Weather-Based Irrigation (Smart Irrigation)	Uses climate data (humidity, temperature, rainfall) to schedule irrigation	Adapts to real-time weather changes
Drip & Sprinkler Automation	Uses electronic valves , sensors , and flow meters to deliver precise water amounts	Best for water conservation

3. Components of an Automated Irrigation System

1. Sensors:

- **o** Soil Moisture Sensors Detects soil water content
- **o** Temperature & Humidity Sensors Monitors climatic conditions
- **o** Rain Sensors Prevents irrigation during rainfall

2. Controllers & Valves:

- o Programmable Controllers Controls irrigation timing
- o Solenoid Valves Regulates water flow

3. Communication Systems:

- o IoT (Internet of Things) Allows remote monitoring via mobile apps
- GSM Modules & Cloud Computing Connects irrigation systems to online servers

4. Advantages of Automation in Irrigation

- Saves Water Reduces wastage by 30-50%.
- Increases Crop Yield Ensures optimum soil moisture.
- Saves Labor & Time Reduces manual intervention.
- Prevents Over-Irrigation & Waterlogging.
- Improves Irrigation Efficiency Maximizes water use efficiency (WUE).

5. Challenges in Irrigation Automation

- **X** High Initial Cost Requires investment in sensors & controllers.
- X Technical Knowledge Required Farmers need training.
- X Power Supply Issues Some automated systems need electricity or solar backup.
- X Sensor Malfunctioning Requires periodic maintenance.

6. Conclusion

- Irrigation efficiency is crucial to optimize water use and crop productivity.
- Automation improves efficiency by minimizing water loss and labor.
- Smart irrigation systems (IoT-based, sensor-based) are the future of water management in agriculture.

This structured approach ensures maximum irrigation efficiency and sustainable water use!