

SNS COLLEGE OF TECHNOLOGY An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING 23ECT203- DIGITAL SIGNAL PROCESSING

II YEAR/ IV SEMESTER

UNIT 2 – IIR FILTER DESIGN

TOPIC – BUTTERWORTH FILTER

BUTTERWORTH FILTER/23ECT203 – DIGITAL SIGNAL PROCESSING/Dr.NJR MUNIRAJ/DEAN-ECE/SNSCT

20-Feb-25

DESIGN OF LOWPASS DIGITAL BUTTERWORTH FILTER

- The popular methods of designing IIR digital filter involves the design of equivalent analog filter and then converting the analog filter into digital filter
- Hence to design a Butterworth IIR digital filter, first an analog butterworth filter transfer function is determined using the given specifications
- Then the analog filter transfer function is converted to a digital filter transfer function by using either Impulse Invariant Transformation (or) Bilinear Transformation

ANALOG BUTTERWORTH FILTER

- The analog Butterworth filter is designed by approximating the ideal analog filter frequency response, $H(j\Omega)$ using an error function
- The error function is selected such that the magnitude is maximally flat in the passband and monotonically decreasing in the stopband (The magnitude is maximally flat at the origin i.e., $\Omega = 0$ and monotonically decreasing with increasing Ω
- The magnitude response of lowpass filter obtained by this approximation is given by $|\underline{H}(\Omega)|^2 = \frac{1}{1 + \left[\frac{\Omega}{\Omega c}\right]^{2N}}$

PROPERTIES OF BUTTERWORTH FILTERS

- The Butterworth filters are all pole designs (i.e., the zeros of the filters exist at infinity)
- At the cutoff frequency Ω_c the magnitude of normalized Butterworth filter is $1/\sqrt{2}$ (i.e., $|H(j\Omega)| = 1/\sqrt{2} = 0.707$) Hence the dB magnitude at the cutoff frequency will be 3 dB less than the maximum value
- The filter order N completely specifies the filter
- The magnitude is maximally flat at the origin
- The magnitude is a monotonically decreasing function of Ω
- The magnitude response approaches the ideal response as the value of N increases

TRANSFER FUNCTION OF ANALOG BUTTERWORTH LOWPASS FILTER

- For a stable and causal filter the poles should lie on the left half of s-plane. Hence the digital filter transfer function is formed by choosing the N – number of left half poles
- When N is even, all the poles are complex and exist as conjugate pair. When N is odd, one of the poles is real and all other poles are complex and exist as conjugate pair
- Therefore the transfer function of Butterworth filters will be a product of second order factors

NORMALIZED BUTTERWORTH LPF **TRANSFER FUNCTION**

- N be the order of the filter
- $H(s_n)$ be the normalized Butterworth lowpass filter function
- When N is even, H(s_n) When N is odd, $H(s_n) =$

$$= \frac{1}{s_{n} + 1} \prod_{k=1}^{2} \frac{1}{s_{n}^{2} + b_{k} s_{n} + 1}$$

where, $b_{k} = 2 \sin\left[\frac{(2k - 1)\pi}{2N}\right]$

UNNORMALIZED BUTTERWORTH LPF **TRANSFER FUNCTION**

- The unnormalized transfer function is obtained by replacing s_n by s/ Ω_c in the normalized transfer function, where Ω_c is the 3 dB cutoff frequency of the lowpass filter
- H(s) be the normalized Butterworth lowpass filter function
- When N is even,

$$\therefore H(s) = \prod_{k=1}^{\frac{N}{2}} \frac{1}{s_n^2 + b_k s_n}$$
$$= \prod_{k=1}^{\frac{N}{2}} \frac{\Omega_c^2}{s_n^2 + b_k \Omega_c s_n^2}$$

BUTTERWORTH FILTER/23ECT203 – DIGITAL SIGNAL PROCESSING/Dr.NJR MUNIRAJ/DEAN-ECE/SNSCT

UNNORMALIZED BUTTERWORTH LPF **TRANSFER FUNCTION**

- H(s) be the normalized Butterworth lowpass filter function
- When N is odd, H(s) is obtained by letting $s_n \rightarrow s / \Omega_c$ in the normalized Butterworth lowpass filter function

$$\therefore H(s) = \frac{1}{s_n + 1} \prod_{k=1}^{\frac{N-1}{2}} \frac{1}{s_n^2 + b_k s_n}$$
$$= \frac{\Omega_c}{s + \Omega_c} \prod_{k=1}^{\frac{N-1}{2}} \frac{\Omega_c^2}{s^2 + b_k \Omega_c}$$

BUTTERWORTH LPF NORMALIZED TRANSFER FUNCTION

Order, N	Normalized tansfer function, H(s _n)
1	$\frac{1}{s_n + 1}$
2	$\frac{1}{s_n^2 + 1.414 s_n + 1}$
3	$\frac{1}{(s_n + 1) (s_n^2 + s_n + 1)}$
4	$\frac{1}{(s_n^2 + 0.765s_n + 1)(s_n^2 + 1.848s_n + 1)}$
5	$\frac{1}{(s_n + 1) (s_n^2 + 0.618s_n + 1) (s_n^2 + 1.618s_n + 1)}$
6	$\frac{1}{(s_n^2 + 1.932 s_n + 1) (s_n^2 + 1.414 s_n + 1) (s_n^2 + 0.518 s_n + 1)}$

BUTTERWORTH FILTER/23ECT203 – DIGITAL SIGNAL PROCESSING/Dr.NJR MUNIRAJ/DEAN-ECE/SNSCT

FREQUENCY RESPONSE OF ANALOG LOWPASS **BUTTERWORTH FILTER**

BUTTERWORTH FILTER/23ECT203 – DIGITAL SIGNAL PROCESSING/Dr.NJR MUNIRAJ/DEAN-ECE/SNSCT

20-Feb-25

ORDER OF THE LOWPASS BUTTERWORTH FILTER

- In Butterworth filters the frequency response of the filter depends on the order N. The specifications of the filter are given in terms of gain at a passband and stopband frequency
- A_{p} Gain or Magnitude at pass band edge frequency Ω_{p}
- A_s Gain or Magnitude at Stop band edge frequency Ω_s

$$N_{1} = \frac{1}{2} \frac{\log \left[\frac{\left(1/A_{s}^{2}\right)}{\left(1/A_{p}^{2}\right)}\right]}{\log \left(\frac{\Omega_{s}}{\Omega_{p}}\right)}$$

ORDER OF THE LOWPASS BUTTERWORTH FILTER

- The specifications of the filter are given in terms of dB attenuation at a passband and stopband frequency
- $\alpha_{p, dB}$ dB attenuation at pass band edge frequency Ω_{p}
- $\alpha_{s, dB}$ dB attenuation at Stop band edge frequency Ω_s

BUTTERWORTH FILTER/23ECT203 – DIGITAL SIGNAL PROCESSING/Dr.NJR MUNIRAJ/DEAN-ECE/SNSCT

LOWPASS BUTTERWORTH FILTER

Bilinear Transformation: lacksquare

$$\Omega_{\rm p} = \frac{2}{T} \, \frac{\omega_{\rm p}}{2}$$

Impulse Invariant Transformation: \bullet

$$\Omega_{p} = \frac{\omega_{p}}{T}$$

tan

CUTOFF FREQUENCY OF LOWPASS **BUTTERWORTH FILTER**

When the specifications are A_p , A_s , ω_p , ω_s

Cutoff frequency, Ω_c

Cutoff frequency, Ω_c

BUTTERWORTH FILTER/23ECT203 - DIGITAL SIGNAL PROCESSING/Dr.NJR MUNIRAJ/DEAN-ECE/SNSCT

20-Feb-25

CUTOFF FREQUENCY OF LOWPASS **BUTTERWORTH FILTER**

When the specifications are $\alpha_{p,dB}$, $\alpha_{s,dB}$, ω_p , ω_s

Cutoff frequency, Ω_c Cutoff frequency, Ω_c

BUTTERWORTH FILTER/23ECT203 – DIGITAL SIGNAL PROCESSING/Dr.NJR MUNIRAJ/DEAN-ECE/SNSCT

20-Feb-25

DESIGN PROCEDURE FOR LOWPASS DIGITAL BUTTERWORTH IIR FILTER

- ω_{p} Pass band edge digital frequency in rad /sample
- ω_s Stop band edge digital frequency in rad/sample
- A_{p} Gain at pass band edge frequency ω_{p}
- A_{s} Gain at Stop band edge frequency ω_{s}
- $T = 1/F_s$ Sampling time in sec.
- Where $F_s =$ Sampling frequency in Hz
- $\Omega_{\rm p}$ Pass band edge analog frequency corresponding to $\omega_{\rm p}$
- Ω_{s} Stop band edge analog frequency corresponding to ω_{s}

DESIGN PROCEDURE FOR LOWPASS DIGITAL BUTTERWORTH IIR FILTER

- 1. Choose either Bilinear or Impulse Invariant transformation and determine the specifications of equivalent analog filter
- The gain or attenuation of analog filter is same as digital filter
- **Bilinear Transformation:**

$$\Omega_{p} = \frac{2}{T} \tan \frac{\omega_{p}}{2} \qquad \qquad \Omega_{s} = \frac{2}{T} \tan \frac{\omega_{s}}{2}$$

Impulse Invariant Transformation:

$$\Omega_{p} = \frac{\omega_{p}}{T} \qquad \Omega_{s} = \frac{\omega_{s}}{T}$$

ORDER OF THE LOWPASS DIGITAL **BUTTERWORTH FILTER**

2. Decide the order N of the filter. In order to estimate the order N, Calculate the Parameter N_1 using the following equation:

Choose N such that, $N \ge N_1$. Usually N is chosen as nearest integer just greater than N_1

NORM&LIZED BUTTERWORTH LPF **TRANSFER FUNCTION**

- 3. Determine the normalized transfer function $H(s_n)$ of the analog lowpass filter function
- When N is even,

When N is odd,

4. Calculate the analog Cutoff frequency Ω_{c}

Cutoff frequency, $\Omega_c = -$

31 - N 2013

BUTTERWORTH FILTER/23ECT203 – DIGITAL SIGNAL PROCESSING/Dr.NJR MUNIRAJ/DEAN-ECE/SNSCT

UNNORMALIZED ANALOG TRANSFER FUNCTION

- 5. Determine the unnormalized analog transfer function H (s) is obtained by replacing s_n by s/ Ω_c in the normalized transfer function of the low pass filter function
- When N is even,

$$\therefore H(s) = \prod_{k=1}^{\frac{N}{2}} \frac{1}{s_n^2 + b_k s_n}$$
$$= \prod_{k=1}^{\frac{N}{2}} \frac{\Omega_c^2}{s^2 + b_k \Omega_c}$$

BUTTERWORTH FILTER/23ECT203 – DIGITAL SIGNAL PROCESSING/Dr.NJR MUNIRAJ/DEAN-ECE/SNSCT

UNNORMALIZED ANALOG TRANSFER FUNCTION

- H(s) be the normalized Butterworth lowpass filter function
- When N is odd, H(s) is obtained by letting $s_n \rightarrow s / \Omega_c$ in the normalized Butterworth lowpass filter function

$$\therefore H(s) = \frac{1}{s_n + 1} \prod_{k=1}^{\frac{N-1}{2}} \frac{1}{s_n^2 + b_k s_n}$$
$$= \frac{\Omega_c}{s + \Omega_c} \prod_{k=1}^{\frac{N-1}{2}} \frac{\Omega_c^2}{s^2 + b_k \Omega_c}$$

DESIGN PROCEDURE FOR LOWPASS DIGITAL BUTTERWORTH IIR FILTER

- 6. Determine the transfer function of digital filter H(z). Using the suitable transformation to transform H(s) to H(z). When the Impulse invariant transformation is employed, if T<1, then multiply H(z) by T to normalize the magnitude.
- 7. Realize the digital filter transfer function H(z) by a suitable structure
- 8. Verify the design by sketching the frequency response H ($e^{j\omega}$)

H (
$$e^{j\omega}$$
) = H(z) / z= $e^{j\omega}$

ASSESSMENT

- 1. Compare Impulse Invariant and Bilinear transformation?
- 2. What is Butterworth approximation?
- 3. How will you choose the order N for a Butterworth Filter?
- 4. List the Properties of Butterworth Filter.
- 5. Analog filter transfer function is converted to a digital filter transfer function by using either ------ (or) ------
- 6. Define Sampling Time.

20-Feb-25

THANK YOU

20-Feb-25

BUTTERWORTH FILTER/23ECT203 – DIGITAL SIGNAL PROCESSING/Dr.NJR MUNIRAJ/DEAN-ECE/SNSCT

