SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Randomized block Design (RBD) (or Two way Classification

It is a two factor experiment.

Procedure :

Step 1: Null hypothesis: H.: There is no significant difference between columns and Stows.

Alternative hypothesis: H. : There is a significant difference between columns and rows.

Step 2:
$$\pm$$
 Find N
 \pm Find T
 \pm Find $C.F = T^2/N$
Step 3: \pm Find $SST = \sum x_1^2 + \sum x_2^2 + \cdots - C.F$
 \pm Find $SSC = (\sum x_1)^2 + (\sum x_2)^2 + \cdots - C.F$
 \pm Find $SSR = (\sum y_1)^2 + (\sum y_2)^2 + \cdots - C.F$

Find SSE = SST - SSC - SSR

Step 4: ANOVA table.

Source of Variation	Degree of freedom	Sum of Squares	Mean Sum of squares	Variance Tatio	Table value
Between	(c-1)	SSC	Msc = ssc C-1	Fc = MSC MSE	F_ (C-1,
Between Yows	(~-1)	SSR	MSR = SSR	F = MSR	E (1-1.
Between	(r-1).x	SSE	MSE = SSE	MSE	(e -1×1-1)

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Problem.

An experiment was designed to study the performance of 4 different detergents for cleaning of injectors.

The following "Cleanliness" seadings were obtained with specially designed equipment for 12 tanks of gas distributed over 3 different models of engines.

	1	Chaine Z	Total
Engine 1	Engine 2	Zirgine	
45	43	51	139
47	46	52	145
	50	55	153
	37	49	128
-	176	207	565
	0	45 43 47 46 48 50 42 37	45 43 51 47 46 52 48 50 55 42 37 49

Perform the ANOVA test at 0.01 level of significance whether there are differences in the detergents or in the engines.

Solution: Fix origin = 50. Subtract each element

from so.

Engine	×,	X ₂	×3	Total	x,2	X22	X3
A (Y,)	-5	-7	+1	-11	25	49	L
B (y2)	-3	-4	2	-5	9	16	4
c (y3)	-2	o	5	3	4	0	25
D (94)	- 8	-13	-1	-22	64	169	1
Total	- 18	-24	7	- 35	102	234	31

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

Step 1: Null hypothesis
$$H_0$$
: There is no significant difference between engines and detergents.

Alternative hypothesis H_1 : There is a significant difference between engines and detergents

Step 2: $\frac{1}{2}$ \frac

Step4: ANOVA table:

SSE = 18.84

Source of Vasiation	Degree of	Sum of Squares	Mean Sum of Squares	Variance	at 14 ites
Between Columns	(-1 = 3-1 = 2	SSC = 135.17	MSC = SSC C-1 = 67.585	Fc = MSC	Fa(2,6) = 10.92
Between rows	7-1=4-1 =3	SSR = 110.91	MSR = 95R	Fe = MSR	F (316)
Between essors	((-1)(7-1)	SSE = 18.84	MSE = SSE = 3.9	The second secon	= 9.78

Steps: Decision: Since Fc > Fx and FR > Fx, Ho is sejected.

There is a significant difference between engines and detergents