


(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

(14) Find the values of a and b so that the surface
$ax^{3} - by^{2}z = (a+z)x^{2}$ and $4x^{2}y - z^{3} = 11$ may cut
Orthogonally at (2,-1,-3). (1) is plan points
-soln:
a = -7/3 & $b = -64/9$
DIVERGENCE OF A VECTOR POINT FUNCTION :
Let F be any given continuously differentiable
Vector point function then the divergence of F
is defined as,
div $\vec{F} = \nabla \cdot \vec{F} = (\vec{i} \cdot \frac{\partial}{\partial x} + \vec{j} \cdot \frac{\partial}{\partial y} + \vec{k} \cdot \frac{\partial}{\partial z}) \cdot \vec{F}$
$=$ $\overline{1}$, $\partial \overline{F}$ $+$ $\overline{1}$, $\partial \overline{F}$ $+$ \overline{K} , $\partial \overline{F}$
Prover and the ter the ter of the stand of the second seco
NOTE :
1. V. F is a scalar point function.
2. If $\vec{F} = F_1\vec{i} + F_2\vec{j} + F_3\vec{k}$ be a continuously
differentiable vector point function then,
div $F = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z^{-1}}$
Solenoidal vector : a av av
A vector F' is said to be solenoidal
Vector if div F=0. + d8 - d1 + 18 -
CURL OF A VECTOR POINT FUNCTION:
Let $\vec{F}_{i} = F_{i}\vec{i} + F_{j}\vec{j} + F_{j}\vec{k}$ be any given Continuously differentiable vector point function, the
Curl or rotation of F is defined as,
Curron of the acquired us

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

PROBLEMS:
(1) Prove that
$$\operatorname{curl}(\nabla \varphi) = o$$
 (or) $\nabla \times \nabla \varphi = o$.
Sola:
 $\nabla = \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}$
 $\nabla \varphi = \vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z}$
 $\operatorname{curl}(\nabla \varphi) = \nabla \times \nabla \varphi = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$
 $= \vec{i} \left(\frac{\partial^2 \varphi}{\partial y \partial z} - \frac{\partial^2 \varphi}{\partial y \partial z} \right) - \vec{j} \left(\frac{\partial^2 \varphi}{\partial x \partial z} - \frac{\partial^2 \varphi}{\partial x \partial z} \right) +$
 $= o$
 $\vec{k} \left(\frac{\partial^2 \varphi}{\partial x \partial y} - \frac{\partial^2 \varphi}{\partial x \partial y} \right)$
Prove that $\operatorname{div}(\operatorname{curl} \vec{F}) = o$ (or) $\nabla \cdot (\nabla \times \vec{F}) = o$
 $\frac{\operatorname{soln:}}{\operatorname{curl} \vec{F}} = \int \frac{\vec{i}}{\partial x} - \frac{\vec{j}}{\partial y} - \frac{\partial}{\partial z} - \vec{j} \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z} \right) +$
 $\vec{k} \left(\frac{\partial F_3}{\partial z} - \frac{\partial F_2}{\partial z} \right) +$
 $\vec{k} \left(\frac{\partial F_3}{\partial z} - \frac{\partial F_1}{\partial z} \right) +$
 $\vec{k} \left(\frac{\partial F_3}{\partial z} - \frac{\partial F_1}{\partial z} \right) +$
 $\vec{k} \left(\frac{\partial F_3}{\partial z} - \frac{\partial F_2}{\partial z} \right) +$
 $\vec{k} \left(\frac{\partial F_3}{\partial z} - \frac{\partial F_2}{\partial z} \right) + \left[\vec{i} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) - \vec{j} \left(\frac{\partial F_3}{\partial z} - \frac{\partial F_1}{\partial z} \right) + \vec{k} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) + \vec{k} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) + \vec{k} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) + \vec{k} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) + \vec{k} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) + \vec{k} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) + \vec{k} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) + \vec{k} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) + \vec{k} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) + \vec{k} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) + \vec{k} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_3}{\partial y} \right)$

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

(7) Find the constants
$$a, b, c$$
 so that the vector
 $\vec{F} = (x + 2y + az)\vec{r} + (bx - 3y - z)\vec{j} + (+x + cy + 2z)\vec{k}$
is irrotational.
 $\overrightarrow{Soln:}$
 $\vec{T} \times \vec{F} = \begin{vmatrix} \vec{r} & \vec{j} & \vec{k} \\ \vec{r} \times \vec{F} &= \begin{vmatrix} \vec{r} & \vec{j} & \vec{k} \\ \vec{r} & \vec{r} & \vec{r} & \vec{r} \end{vmatrix}$
 $= \vec{i} \left[\frac{\partial}{\partial y} (+x + cy + az) - \frac{\partial}{\partial z} (bx - 3y - z) \right]$
 $-\vec{j} \left[\frac{\partial}{\partial x} (+x + cy + az) - \frac{\partial}{\partial z} (bx - 3y - z) \right]$
 $+\vec{k} \left[\frac{\partial}{\partial x} (bx - 3y - z) - \frac{\partial}{\partial y} (x + 2y + az) \right]$
 $= \vec{i} (c+1) - \vec{j} (4-a) + \vec{k} (b-2)$
Given : \vec{F} is irrotational.
 $i \cdot e, \quad \forall x \vec{F} = 0$.
 $\vec{i} (c+1) - \vec{j} (4-a) + \vec{k} (b-2) = 0$.
 $c+1 = 0 \Rightarrow c = -1$
 $4-a = 0 \Rightarrow a = 4$
 $b-2 = 0 \Rightarrow b = 2$.
(8) Find 'a' so that the vector
 $\vec{A} = (ax^2 - y^2 + x)\vec{i} - (2xy + y)\vec{j}$ is 'irrotational.
Soln:
Given : \vec{A} is irrotational.
 $\vec{x} \times \vec{A} = 0$.

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

 $\nabla \times \overrightarrow{A} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \partial /\partial x & \partial /\partial y & \partial /\partial z \\ a x^2 - y^2 + x - (2xy + y) & 0 \end{vmatrix}$ $= \vec{i}(0) - \vec{j}(0) + \vec{k}(-2y+2y) = 0$ a is arbitrary. (9) prove F = (y² cosx + z³) i + (zysinx - 4) j + 3xz k is irrotational and find its scalar potential p Such that $\vec{F} = \nabla \phi$ $\nabla x \vec{F} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \end{bmatrix}$ -Soln : $y^2 \cos x + z^3 \qquad ay \sin x - 4 \qquad 3xz^2$ $= \overline{i} \left[\frac{\partial}{\partial y} (3\pi z^2) - \frac{\partial}{\partial z} (2y \sin x - 4) \right]^{-1} (\overline{z})$ $-\tilde{J}\left[\frac{\partial}{\partial x}(3xz^3)-\frac{\partial}{\partial z}(y^2\cos x+z^3)\right]$ $+\vec{k}\left[\frac{\partial}{\partial x}(2y\sin x-4)-\frac{\partial}{\partial y}(y^2\cos x+z^3)\right]$ OI + OI + OK È is irrotational. To find φ : $\nabla \varphi = (y^2 \cos x + z^2)\vec{i} + (ay \sin x - 4)\vec{j} + 3xz^2\vec{k}$ We know that $\nabla \varphi = \vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z}$

Page 5

$$\frac{\partial \varphi}{\partial x} = y^{2} \cos x + z^{3} \Rightarrow \varphi = y^{2} \sin x + z^{3} + f(y,z)$$

$$\frac{\partial \varphi}{\partial y} = \partial y \sin x - 4 \Rightarrow \varphi = y^{2} \sin x - 4y + f(x,z)$$

$$\frac{\partial \varphi}{\partial z} = 3 \times z^{2} \Rightarrow \varphi = y^{2} \times z^{3} + f(x,y)$$
(10) Show that $\vec{F} = (bxy + z^{3})\vec{r} + (3x^{2} - z)\vec{j} + (3xz^{2} - y)\vec{k}^{2}$ is irrotational. Find φ such that $\vec{F} = \nabla \varphi$.
$$\frac{Soln:}{F} \varphi = 3x^{2}y + xz^{3} - yz + c$$
(1) $If \nabla \varphi = yz\vec{r} + xz\vec{j} + xy\vec{k}^{2}$ then find φ .
$$\frac{Soln:}{\phi} = xyz + c$$
(2) $Prove that div \hat{r} = 2/r$.
$$\frac{Soln:}{div} \hat{r} = \nabla \cdot (\frac{\vec{r}}{r})$$

$$= (\frac{\partial}{\partial x}\vec{r} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}) \cdot (\frac{x\vec{i} + y\vec{j} + z\vec{k}}{r})$$

$$= \frac{\partial}{\partial x}(\frac{x}{r}) + \frac{\partial}{\partial y}(\frac{y}{r}) + \frac{\partial}{\partial z}(\frac{z}{r})$$

$$= \frac{1}{r} - \frac{1}{r^{2}} \cdot x\frac{\partial r}{\partial x} + \frac{1}{r} - \frac{1}{r^{2}} \cdot y\frac{\partial r}{\partial z} + \frac{1}{r^{2}} - \frac{1}{r^{2}} \cdot z\frac{\partial r}{\partial z}$$
Now $r^{2} = x^{2} + y^{2} + z^{2}$.
$$zr \frac{\partial r}{\partial x} = 2x \Rightarrow \frac{\partial r}{\partial x} = \frac{x}{r}$$

.