

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

VECTOR CALCULUS Scalar Quantity : A scalar quantity is that which has magnitude and is not related to any direction. Vector Quantity: A vector vuantity is that which has both magnitude and direction. Scalar Point function : 10000 12 placounitars at hom If corresponding to each point P of a sugion R there corresponds a scalar denoted by Q(P) or p(x,y,z) then p is said to be a scalar point function for the stegion R. Example: The temperature Q(P) at any point P of a body occupying a certain sugion is a scalar point function . Vector point function : If corresponding to each point P of a Stegion R, there corresponds a vector denoted by F(P), then F is said to be a vector point function for the Region R. Example: The acceleration F(P) of a particle at any time to occupying the position P in a certain region is a vector point function. $brook (f \pm g) = qrad (f \pm g)$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

Vector Differential Operator: The vector differential operator & is defined as, $\nabla = \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} = \vec{z} \vec{i} \frac{\partial}{\partial x}$ Gradient of a scalar point function : Let $\varphi(x, y, z)$ be a scalar point function and is continuously differentiable then the vector $\nabla \varphi = \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}\right) \varphi \Big|$ $= \vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z}$ is called the gradient of φ and is written as grad φ . i.e., grad $\varphi = \nabla \varphi$ Note : 1. Vo defines a vector field. 2. $\nabla \phi \neq \phi \nabla$. There will be no '.' or 'x'. between φ and ∇ . and φ himself is a set Properties of Gradient: 1. If f and g are two scalar point functions then. $\nabla(f \pm g) = \nabla f \pm \nabla g$ (or) $grad (f \pm g) = grad f \pm grad g$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

(2) If f and g are two scalar point functions then,

$$\nabla (fg) = f \forall g + g \forall F$$
(or) $grad (fg) = f(grad g) + g(grad f)$
(3) If f and g are two scalar point functions then,
 $\left[\forall \left(\frac{f}{g}\right) = \frac{g \forall F - f \forall g}{g^2} \text{ where } g \neq o \right]$
 $grad \left(\frac{f}{g}\right) = \frac{g(grad f) - f(grad g)}{g^2}$
(c) $grad \left(\frac{f}{g}\right) = \frac{g(grad f) - f(grad g)}{g^2}$
(c) $Gradient of a constant is zero
 $i.e., \forall \nabla \phi = 0$
Problems:
(1) Find grad ϕ where $\phi = x^2 + y^2 + z^2$
Soln:
 $\forall \phi = \vec{i} \cdot \frac{\partial \phi}{\partial x} + \vec{j} \cdot \frac{\partial \phi}{\partial y} + \vec{k} \cdot \frac{\partial \phi}{\partial z}$
 $= \vec{i} \cdot \frac{\partial}{\partial x} (x^2 + y^2 + z^2) + \vec{j} \cdot \frac{\partial}{\partial y} (x^2 + y^2 + z^2) + \vec{k} \cdot \frac{\partial}{\partial z} (x^2 + y^2 + z^2)$
 $= \vec{i} \cdot (2x) + \vec{j} \cdot (2y) + \vec{k} \cdot (2x)$
 $\forall \phi = 2x\vec{i} + 2y\vec{j} + 2z\vec{k}$
(2) Find grad ϕ if $\phi = xyz$ at $(1, 1, 1)$
 $\leq oln:$
 $\forall \phi = \vec{i} \cdot \frac{\partial \phi}{\partial x} + \vec{j} \cdot \frac{\partial \phi}{\partial y} + \vec{k} \cdot \frac{\partial \phi}{\partial z}$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

 $\nabla \varphi = \vec{i} \frac{\partial}{\partial x} (xyz) + \vec{j} \frac{\partial}{\partial y} (xyz) + \vec{k} \frac{\partial}{\partial z} (xyz)$ $= \vec{i} yz + \vec{j} (xz) + \vec{k} (xy)$ $\nabla \varphi_{(1,1,1)} = \vec{i} + \vec{j} + \vec{k}.$ Find grad ρ where $\phi = 3x^2y - y^3z^2$ at (1,1,1). $\nabla \varphi = \vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z}$ $=\overline{i}\frac{\partial}{\partial x}(3x^{2}y-y^{3}z^{2})+\overline{j}\frac{\partial}{\partial y}(3x^{2}y-y^{3}z^{2})$ $+ \frac{\partial}{\partial z} \left(3x^{2}y - y^{3}z^{2} \right)$ $= \vec{i} (6xy) + \vec{j} \cdot (3x^2 - 3y^2 z^2) + \vec{k} (-2y^3 z)$ $\nabla \varphi_{(1,1,1)} = 6\vec{i} - 2\vec{k}$ If $\varphi = \log(2x^2 + y^2 + z^2)$ find $\nabla \varphi$ borg borg () soln: $\nabla \varphi = \vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial u} + \vec{k} \frac{\partial \varphi}{\partial v}$ $= \overline{i} \frac{\partial}{\partial x} \left[\log \left(x^2 + y^2 + z^2 \right) \right] + \overline{j} \frac{\partial}{\partial y} \left[\log \left(x^2 + y^2 + z^2 \right) \right]$ $+ \vec{k} \frac{\partial}{\partial z} \left[\log \left(x^2 + y^2 + z^2 \right) \right]$ $= \frac{1}{1} \frac{-1}{x^2 + y^2 + z^3} (2x) + \frac{1}{y} \frac{1}{x^2 + y^3 + z^3} (2y) + \frac{1}{x^2 + y^3 + z^3} (2$ (x_1, y_2, y_3) to $x_2 \times \overline{K^2 + y_2^2} = (2z) p$ and (g) $= \frac{a}{n^2 + y^2 + z^2} (n\vec{i} + y\vec{j} + z\vec{k})$