

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-35

DEPARTMENT OF BIOMEDICAL ENGINEERING

23BMT203 - BIOMEDICAL TRANSDUCERS AND SENSORS

UNIT II- Pressure, Displacement and Temperature II Year/ IV Sem

Dr. K. Manoharan, ASP / BME / SNSCT

23BMT203 - BIOMEDICAL TRANSDUCERS AND SENSORS / Dr. K. Manoharan, ASP / BME / SNSCT

BIOMEDICAL TRANSDUCERS AND SENSORS

- ✓ Resistive Strain Gauges and Bridge circuit
- ✓ Piezoelectric Transducers
- ✓ Potentiometric Transducers
- ✓ Capacitive, Inductive
- ✓ LVDT Transducers Principle
- ✓ Equivalent Circuit & Linearity Issues
- ✓ Thermo Resistive Resistance Temperature Detectors (RTDS)
- ✓ Thermistor Thermo Electric Thermocouple
- ✓ PN Junction Diode

- ✓ A strain gauge is an example of a passive transducer that converts a mechanical displacement into a change of resistance.
- ✓ It is a thin, wafer-like device that can be attached to a variety of materials by a suitable adhesive to measure the applied strain.
- ✓ As the structure is stressed, the resulting strain deforms the strain gauge attached to the structure.
- ✓ It causes an increase in the resistivity of the gauge which produces an electrical signal proportional to the deformation.
- The strain gauge displacement sensor consists of a structure attached with the strain gauge that elastically deforms when subjected to a displacement.

Principle of Operation

• A resistive strain gauge operates on the fundamental relationship between resistance and the physical dimensions of a conductor:

R=p L/A

where:

- R = Resistance
- ρ= Resistivity of the material
- L= Length of the conductor
- A = Cross-sectional area

Gauge Factor (GF)

The sensitivity of a strain gauge is measured by the Gauge Factor (GF):

 $GF = \frac{\Delta R/R}{\varepsilon}$

where:

 ΔR = Change in resistance

R = Original resistance

 ε = Strain

Strain gauge with Wheatstone bridge circuit

23BMT203 - BIOMEDICAL TRANSDUCERS AND SENSORS / Dr. K. Manoharan, ASP / BME / SNSCT

Wheatstone Bridge Configuration

- ✓ A Wheatstone bridge consists of four resistors (R1,R2,R3, R4) arranged in a diamond shape.
- ✓ A voltage source (V) is applied across the bridge, and the output voltage (Vout) is measured across the middle nodes.

$$V_{out} = V_{ex} imes \left(rac{R_1}{R_1+R_2} - rac{R_3}{R_3+R_4}
ight)$$

- ✓ When the bridge is **balanced** (R1/R2=R3/R4), Vout=0V.
- ✓ When strain changes the resistance of the strain gauge, the bridge becomes unbalanced, producing a measurable output voltage.

Bridge Configurations

There are three main configurations based on the number of active strain gauges:

(a) Quarter-Bridge Circuit

One active strain gauge, with three fixed resistors.

Simple but susceptible to temperature variations.

(b) Half-Bridge Circuit

Two active strain gauges, placed in opposite arms of the bridge.

Provides temperature compensation and increased sensitivity.

(c) Full-Bridge Circuit

Four active strain gauges, with two in tension and two in compression.

Offers maximum sensitivity and best temperature compensation.

23BMT203 - BIOMEDICAL TRANSDUCERS AND SENSORS / Dr. K. Manoharan, ASP / BME / SNSCT

Advantages of Strain Gauge :

- (i) There is no moving part and hence no wear
- (ii) Strain gauges are very precise
- (iii) It is small and inexpensive
- (iv) It has a high-frequency bandwidth.

Disadvantages of Strain Gauge :

- (i) It is non-linear
- (ii) It is very sensitive to temperature.
- (iii) It needs to be calibrated regularly

(iv) Strain gauges have to be applied manually. Putting them in their place consuming and costly. It is one of their biggest disadvantages

Applications

Engineering and Structural Health Monitoring

Monitoring strain in bridges, dams, and aircraft components.

Measuring stress in mechanical components.

Biomedical Applications

Monitoring muscle strain in prosthetics.

Measuring forces in orthopedic research.

Industrial and Robotics Applications

Detecting load variations in robotic arms.

Monitoring machinery vibrations and stress.